
 
 
 

I N S T I T U T  D E  S T A T I S T I Q U E 

B I O S T A T I S T I Q U E  E T 

S C I E N C E S  A C T U A R I E L L E S 

( I S B A ) 

 
UNIVERSITÉ CATHOLIQUE DE LOUVAIN 

GBARI, S. and M. DENUIT 

 
 
 

 
 

 
D I S C U S S I O N 

P A P E R 
 

2014/05 
 
 

 
 

Efficient approximations for numbers 
of survivors in the Lee-Carter model 



EFFICIENT APPROXIMATIONS FOR NUMBERS
OF SURVIVORS IN THE LEE-CARTER MODEL

SAMUEL GBARI & MICHEL DENUIT
Institut de statistique, biostatistique et sciences actuarielles - ISBA
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Abstract

In portfolios of life annuity contracts, the payments made by an annuity provider (an in-
surance company or a pension fund) are driven by the random number of survivors. This
paper aims to provide accurate approximations for the present value of the payments made
by the annuity provider. These approximations account not only for systematic longevity
risk but also for the diversifiable fluctuations around the unknown life table. They provide
the practitioner with a useful tool avoiding the problem of simulations within simulations
in, for instance, Solvency 2 calculations, valid whatever the size of the portfolio.

Key words and phrases: Life annuity, mortality projection, Lee-Carter model, comonotonic-
ity, supermodular order, increasing directionally convex order, risk measures.



1 Introduction and motivation

In this paper, we consider the present value of life annuity payments accounting for the
stochastic nature of decrements. Precisely, the systematic longevity risk coming from the
unknown underlying life table as well as the theoretically diversifiable risk of random fluc-
tuations around this life table are both taken into account. Thus, the size of the portfolio
now enters the calculations and this dimension is very important for small to medium-sized
portfolios (see, e.g., Donnelly, 2011).

In the literature, the case of life annuity policies has been treated quite extensively but
only in the limiting case, for homogeneous portfolios comprising infinitely many (condition-
ally) independent contracts. The applicability of these limiting results may be questioned in
insurance practice as life annuity portfolios do not always contain enough policies to reach
full diversification. For these reasons, Hoedemakers et al. (2005) proposed to approximate
the distribution of the number of survivors using the Normal Power formula. In this paper,
we pursue this idea and we allow for unknown future mortality improvements, the death
probabilities prevailing in the future being difficult to assess.

After Lee and Carter (1992), we assume that the death rate at age x in calendar year t is of
the form exp(αx+βxκt). Here, the time index κt reflects the general level of mortality and the
age-specific component βx represents how rapidly or slowly mortality at each age varies when
the general level of mortality changes. The dynamics of the time index is usually described by
ARIMA models. Conditional survival probabilities, given the time index future trajectory,
are complicated functions of the κts. As there is no analytical expression available for
their distribution function, Denuit and Dhaene (2007) used comonotonicity to approximate
the distribution of the sums of strongly correlated LogNormal random variables playing
a central role in the Lee-Carter framework. Expanding on this approach, Denuit (2008)
derived analytic approximations for the quantiles of the life annuity conditional expected
present value given the κts. This is made by supplementing the comonotonic approximations
for the conditional survival probabilities worked out in Denuit and Dhaene (2007) with a
second approximation of the same type for the life annuity conditional expected present
value, given the κts. Denuit, Haberman and Renshaw (2010) further studied the quality
of these approximations, allowing for general ARIMA models instead of the simple random
walk with drift adopted in the majority of papers using Lee-Carter methodology.

In this paper, our aim is to develop accurate approximations for the present value of the
payments made in favor of a group of n annuitants. The size n of the group now explicitly
enters the computations so that our results apply also to small portfolios. Deriving the exact
distribution for the present value of life annuity payments requires extensive simulations or
numerical evaluations. The approximations derived in this paper after Denuit and Dhaene
(2007) and Denuit (2008) avoid the requirement to conduct simulations within simulations
in, for instance, Solvency 2 reserving calculations. Numerical illustrations show that the
comonotonic approximations perform well, which suggests that they can be used in practice
to evaluate the consequences of the uncertainty in future death rates.

To derive an effective comonotonic approximation, it is essential to identify in the problem
under consideration random variables that are as much positively correlated as possible. Par-
tial sums are often good candidates in that respect, as demonstrated in Denuit and Dhaene
(2007). For portfolios of life annuities, the numbers of survivors up to times 1, 2, 3, . . . form a

1



strongly positively dependent sequence for which the comonotonic approximation is expected
to work well. This is precisely the intuitive idea exploited in the present paper, which turns
out to provide accurate approximations. Notice that making the lifetimes comonotonic in
an homogeneous portfolio means that all policyholders die at the same time, which is very
crude. Hence, it is important to select appropriately the random variables which will be
replaced by their comonotonic versions.

The paper is organized as follows. In Section 2, we briefly recall the comonotonic approx-
imations for the conditional survival probabilities derived by Denuit and Dhaene (2007) and
for the conditional expectation of annuity payments present value derived by Denuit (2008).
We supplement previous results with increasing directionally convex stochastic inequalities
between the Lee-Carter conditional survival probabilities and their approximations. Section 3
proposes new approximations for the consecutive numbers of survivors. It is established there
that the approximate numbers of survivors dominate the Lee-Carter ones in the increasing
directionally convex order, which allows us to derive stop-loss order stochastic inequalities for
the present value of life annuity payments. Numerical illustrations are discussed in Section
4. Section 5 briefly concludes.

2 Comonotonic approximations

2.1 Conditional survival probabilities

In this paper, we assume that the force of mortality at age x and time t, denoted as µx(t), is
constant within bands of age and time in the Lexis diagram, but allowed to vary from one
band to the next. Specifically, given any integer age x and calendar year t, it is supposed
that

µx+ξ(t+ τ) = µx(t) for 0 ≤ ξ, τ < 1. (2.1)

Furthermore, the force of mortality is of the form

lnµx(t) = αx + βxκt. (2.2)

Henceforth, we will assume that the values κ1, . . . , κt0 are known but that κt0+1, κt0+2, . . .
are unknown and have to be projected from some appropriate time series model. The future
trajectory κt0+1, κt0+2, . . . is henceforth denoted as κ. Therefore, the force of mortality µx(t)
given in (2.2) is not constant but develops over time following a stochatic process.

Consider an individual aged x0 in calendar year t0, with remaining lifetime T subject to
(2.1)-(2.2). Define δj = exp(αx0+j) > 0, Zj = βx0+jκt0+j and

Sd =
d−1∑
j=0

exp
(
αx0+j + βx0+jκt0+j

)
=

d−1∑
j=0

δj exp(Zj).

In the applications, the time index is generally modelled by means of ARIMA time series
models. Hence, we assume that κ is multivariate Normal so that we have Zj ∼ N or(µj, σ2

j ).
Then, the conditional survival probability over the next d years, given the future trajectory
κ of the time index is given by

Pr[T > d|κ] = exp(−Sd) = dPx0(t0), d = 1, 2, . . .
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Denuit and Dhaene (2007) proposed comonotonic approximations for the conditional
survival probabilities dPx0(t0). Specifically, these conditional probabilities are expected to
be closely dependent for increasing values of d since they can be viewed as the exponential of
the sum of death rates from age x0 to age x0 +d−1. So, it may be reasonable to approximate
the random vector of conditional survival probabilities with its comonotonic version.

Recall that a random vector (X1, . . . , Xd) is said to be comonotonic if, and only if, there
exist a random variable Z and non-decreasing functions g1, . . . , gd, such that (X1, . . . , Xd)
is distributed as

(
g1(Z), . . . , gd(Z)

)
. Equivalently, (X1, . . . , Xd) is comonotonic if it is dis-

tributed as
(
g1(Z), . . . , gd(Z)

)
with g1, . . . , gd non-increasing. In particular, we may choose

Z to be uniformly distributed over the unit interval [0, 1] and gi to be the quantile function
of Xi, i.e. the left-continuous inverse of the distribution function of Xi. A detailed account
of comonotonicity can be found in Dhaene et al. (2002a,b) and Denuit et al. (2005).

In order to determine whether the approximations derived in this paper are conservative,
we can use the following stochastic order relations. For more details, the readers are referred,
e.g., to Denuit et al. (2005). Considering two random variables X and Y , X is said to be
smaller than Y in the increasing convex order, or stop-loss order, henceforth denoted as
X �icx Y , if the inequality E[g(X)] ≤ E[g(Y )] holds true for all the non-decreasing and
convex functions g for which the expectations exist. A usual strengthening of the stop-loss
order is obtained by requiring in addition that the means of the random variables to be
compared are equal. More precisely, X is said to be smaller than Y in the convex order,
henceforth denoted by X �cx Y , if E[X] = E[Y ] and X �icx Y simultaneously hold. The
term “convex” is used since X �cx Y ⇔ E[g(X)] ≤ E[g(Y )] for all the convex functions g
for which the expectations exist.

Stochastic orderings �cx and �icx aim to mathematically express the intuitive ideas of
“being less variable than” and “being smaller and less variable than” for random variables.
Dealing with random vectors, �cx and �icx may apply marginally to each component but we
also need multivariate stochastic order relations that translate the fact that the components
of one of these vectors are “more positively dependent” than those of the other random
vector. The supermodular order translates this idea in mathematical terms. Precisely, recall
that a function g : Rd → R is said to be supermodular if the inequality

g(x1, . . . , xi + ε, . . . , xj + δ, . . . , xd)− g(x1, . . . , xi + ε, . . . , xj, . . . , xd)

≥ g(x1, . . . , xi, . . . , xj + δ, . . . , xd)− g(x1, . . . , xi, . . . , xj, . . . , xd)

holds for all x ∈ Rd, 1 ≤ i < j ≤ d and all ε, δ > 0. If the function is regular enough
then supermodularity corresponds to ∂2

∂xi∂xj
g ≥ 0 for every i 6= j. Now, consider two d-

dimensional random vectors X and Y such that E[g(X)] ≤ E[g(Y )] for all supermodular
functions g : Rd → R, provided the expectations exist. Then X is said to be smaller than
Y in the supermodular order, which is denoted by X�smY . In words, X�smY means that
X1, . . . , Xd are less positively related than Y1, . . . , Yd. Notice that X�smY ⇒ Xi and Yi are
identically distributed for each i so that X and Y have the same univariate marginals. Also,
X�smY ⇒ Cov[Xi, Xj] ≤ Cov[Yi, Yj] for all i 6= j as g(x) = xixj is obviously supermodular,
which shows that �sm indeed has the intuitive meaning stated above.

If Xi = gi(Zi), where g1, . . . , gd are all decreasing or all increasing and where Z1, . . . , Zd
are identically distributed but strongly correlated, then we can approximate

∑d
i=1 Xi by the
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comonotonic sum
∑d

i=1 gi(Z), where Z is distributed as Zi. This strategy often appears to
be conservative as the stochastic inequalities

(
g1(Z1), . . . , gd(Zd)

)
�sm

(
g1(Z), . . . , gd(Z)

)
and

d∑
i=1

gi(Zi) �cx

d∑
i=1

gi(Z) (2.3)

both hold true, the latter being a consequence of the former.
Thus, we approximate Sd by a sum of perfectly dependent random variables, with the

same marginal distributions, that is, by

Sud =
d−1∑
j=0

δj exp(µj + σjZ), with Z ∼ N or(0, 1). (2.4)

Let Su1 , S
u
2 , . . . be defined from (2.4) for d = 1, 2, . . . with the same random variable Z (so

that they are comonotonic), and define

dP
u
x0

(t0) = exp(−Sud ), d = 1, 2, . . .

The distribution of dP
u
x0

(t0) is easily obtained from the quantile additivity for sums Sud of
comonotonic random variables. For more details, we refer the reader to Denuit and Dhaene
(2007).

The corresponding one-year survival probabilities are given by

Px0+k(t0+k) = exp(−δk exp(Zk)) and P u
x0+k(t0+k) = exp(−δk exp(µk+σkZ)) for k = 1, 2, . . .

Clearly,

dPx0(t0) =
d−1∏
k=0

Px0+k(t0 + k) and dP
u
x0

(t0) =
d−1∏
k=0

P u
x0+k(t0 + k).

Marginally, i.e. for fixed k, the one-year survival probabilities Px0+k(t0 + k) and P u
x0+k(t0 +

k) are identically distributed. This is not the case for the d-year survival probabilities

dPx0(t0) and dP
u
x0

(t0). As pointed out by Denuit and Dhaene (2007), the stochastic inequality

dPx0(t0) �icx dP
u
x0

(t0) holds true for any integer d ≥ 2. The next result extends these
stochastic inequalities to random vectors of conditional survival probabilities up to different
time horizons. To this end, we need the increasing directionally convex order. Recall that
the function g is said to be directionally convex if it is supermodular and coordinatewise
convex. If g is twice differentiable then it is directionally convex if, and only if, ∂2

∂xi∂xj
g ≥ 0

for all i, j ∈ {1, . . . , d}. Now, the d-dimensional random vectors X and Y are said to be
ordered in the increasing directionally convex order, which is denoted by X �idir-cx Y , if
E[g(X)] ≤ E[g(Y )] for all non-decreasing functions g : Rd → R that are directionally convex,
provided the expectations exist. Notice that X �idir-cx Y ⇒ Xi �icx Yi for each i = 1, . . . , d.
The increasing directionally convex order is closely related to the supermodular order with
main difference that supermodular order compares only dependence structures of random
vectors with fixed marginals, whereas the directionally convex order additionally takes into
account the variability of the marginals, which may then be different, as it is the case here for
d-year conditional survival probabilities dPx0(t0) and dP

u
x0

(t0) that are known to be ordered
in the �icx-sense.
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Proposition 2.1. For every integer d ≥ 2, we have

(i)
(
Px0(t0), Px0+1(t0+1), . . . , Px0+d(t0+d)

)
�sm

(
P u
x0

(t0), P u
x0+1(t0+1), . . . , P u

x0+d(t0+d)
)
.

(ii)
(
Px0(t0), 2Px0(t0), . . . , dPx0(t0)

)
�idir-cx

(
P u
x0

(t0), 2P
u
x0

(t0), . . . , dP
u
x0

(t0)
)
.

Proof. The stochastic inequality stated under (i) directly follows from (2.3). Considering
(ii), we know from (2.3) that(

exp(−S1), exp(−S2), . . . , exp(−Sd)
)

�sm

(
exp

(
− F−1

S1
(U)
)
, exp

(
− F−1

S2
(U)
)
, . . . , exp

(
− F−1

Sd
(U)
))

where U is uniformly distributed over the unit interval (0,1). Now, both random vectors(
exp

(
− F−1

S1
(U)
)
, . . . , exp

(
− F−1

Sd
(U)
))

and
(

exp(−Su1 ), . . . , exp(−Sud )
)

are comonotonic

and marginally exp
(
−F−1

Sj
(U)
)
�icx exp(−Suj ) for j = 1, 2, . . . , d. They are then ordered in

the increasing directionally convex sense by Theorem 2.4 in Balakrishnan et al. (2012):(
exp

(
− F−1

S1
(U)
)
, exp

(
− F−1

S2
(U)
)
, . . . , exp

(
− F−1

Sd
(U)
))

�idir-cx

(
exp(−Su1 ), exp(−Su2 ), . . . , exp(−Sud )

)
.

Combining the two stochastic inequalities provides the announced result.

2.2 Systematic risk

Let us consider a basic life annuity contract paying e 1 at the end of each year, as long as
the annuitant survives. Let v(s, t) be the present value at time s of a unit payment made at
time t, s ≤ t. The random variable

aT | =

bT c∑
d=1

v(0, d)

corresponds to the present value of the payments made to an annuitant aged x0 in calendar
year t0 whose remaining lifetime is T (with the convention that the empty sum is zero).
Here, the discount factors v(0, d) can be deduced from an appropriate yield curve and are
thus treated as known, deterministic values. The conditional expectation of the payments
made to this annuitant, given the time index, is

ax0(t0|κ) = E[aT ||κ] =
∑
d≥1

dPx0(t0)v(0, d).

Proposition 2.1 allows us to get the following result derived by Denuit (2008) which
provides an upper bound on ax0(t0|κ) in the �icx-sense.
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Corollary 2.2. ax0(t0|κ) �icx a
u
x0

(t0|Z) =
∑

d≥1 dP
u
x0

(t0)v(0, d).

Proof. Recall that any positive linear combinations of the components of random vectors
ordered in the �idir-cx-sense are ordered in the �icx-sense; see e.g. Proposition 3.4.67 in
Denuit et al. (2005). The announced result then follows from Proposition 2.1(ii).

The random variable ax0(t0|κ) can be seen as the residual risk per annuity contract
in an infinitely large portfolio where only systematic longevity risk remains. Corollary 2.2
provides, thus, a conservative approximation for the risk borne by the annuity provider when
the portfolio is sufficiently large.

3 Present value of life annuity payments

Consider an insurance portfolio made of n life insurance policies covering individuals aged x0

in calendar year t0 with identically distributed remaining lifetimes T1, T2, . . . , Tn. Precisely,
given the future trajectory κ of the time index, the random variables T1, T2, . . . , Tn are
independent and subject to the common death rate (2.2). Generating a realization of each
Ti gives a very detailed picture of the cash-flows but requires n simulations. If the portfolio
is homogeneous with respect to survival probabilities and sum insured, it is often enough to
simulate the number Lk of survivors to age x0 + k for k = 1, 2, . . ., starting from L0 = n.
This considerably speeds the simulation process.

Let I[A] be the indicator variable of the event A, equal to 1 if A is realized and to 0
otherwise. We can decompose Lk into

Lk =
n∑
i=1

I[Ti > k]

= Lk+1 +Dk =
∑
j≥k

Dj

where Dk is the number of deaths recorded during the time interval (k, k + 1). Therefore,
given the conditional survival probabilities, we can expect that replacing the random vari-
ables L1, L2, . . . with comonotonic ones provides an accurate approximation. This approach
considerably reduces the computational burden (as a single realization gives the whole tra-
jectory L1, L2, . . . needed to determine the future cash-flows).

The present value of the payments made to this homogeneous group of n annuitants is

V =
n∑
i=1

∑
k≥1

I[Ti > k]v(0, k) =
∑
k≥1

Lkv(0, k).

Clearly, if the future mortality is unknown and predicted by means of the Lee-Carter model,
the random variables Lk depend on the future trajectory κ of the time index. Denuit
(2008) studied the residual risk per policy ax0(t0|κ) in such a portfolio with n tending
to +∞: considering the identity E[V |κ] = nax0(t0|κ), the large portfolio approximation
V ≈ nax0(t0|κ) is expected to provide accurate results provided n is large enough. The
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present paper aims to study the random variable V and to develop efficient approximations
for its quantiles, not only in large portfolios but also in smaller ones.

To ease the computations, we replace the original Lk with its approximation Luk built
as follows. Given independent random variables Uik, i = 1, 2, . . ., k = 1, 2, . . . uniformly
distributed over the unit interval (0, 1), we can represent Lk, k ≥ 1, as

Lk =d

Lk−1∑
i=1

I[Uik < Px0+k−1(t0 + k − 1)]

=d

n∑
i=1

k∏
j=1

I[Uij < Px0+j−1(t0 + j − 1)]

starting from L0 = n. The first step consists in replacing Lk with L̃k given by

L̃k =d

Lk−1∑
i=1

I[Uik < P u
x0+k−1(t0 + k − 1)]

=d

n∑
i=1

k∏
j=1

I[Uij < P u
x0+j−1(t0 + j − 1)]

starting from L̃0 = n.
The family of Binomial distributions with exponent n and success probability p is known

to be stochastically increasing convex in its parameter p. Therefore, Property 3.4.38 in
Denuit et al. (2005) ensures that kPx0(t0) �icx kP

u
x0

(t0) ⇒ Lk �icx L̃k. The next result
extends these marginal comparisons to random vectors (L1, L2, . . . , Ld) by means of the
increasing directionally convex order.

Proposition 3.1. For every integer d ≥ 2, we have (L1, . . . , Ld) �idir-cx (L̃1, . . . , L̃d).

Proof. Given a function g : {0, 1, . . . , n}d → R, define the auxiliary function g? : [0, 1]d → R
as

g?(px0 , . . . , px0+d−1) = E[g(L1, . . . , Ld)|Px0+k−1(t0) = px0+k−1, k = 0, 1 . . . , d]

=
n∑

l1=0

l1∑
l2=0

· · ·
ld−1∑
ld=0

g(l1, l2, . . . , ld)(
n

l1

)
pl1x0q

n−l1
x0

(
l1
l2

)
pl2x0+1q

l1−l2
x0+1 . . .

(
ld−1

ld

)
pldx0+d−1q

ld−1−ld
x0+d−1.

Now, we need to prove that the auxiliary function g? is supermodular provided g is increasing
and directionally convex. If this is the case, then

E[g(L1, . . . , Ld)] = E[g?(Px0(t0), . . . , Px0+d−1(t0))]

≤ E[g?(P u
x0

(t0), . . . , P u
x0+d−1(t0))] by Proposition 2.1(i)

= E[g(L̃1, . . . , L̃d)].
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Precisely, define the first-order and the second-order differences of g as

∆jg(l1, l2, . . . , ld) = g(l1, l2, . . . , lj + 1, . . . , ld)− g(l1, l2, . . . , lj, . . . , ld)

∆2
j1,j2

g(l1, l2, . . . , ld) = ∆j2g(l1, l2, . . . , lj1 + 1, . . . , ld)−∆j2g(l1, l2, . . . , lj1 , . . . , ld).

We then have to show that

∂2

∂px0+j1∂px0+j2

g?(px0 , . . . , px0+d−1) ≥ 0 for every j1 < j2

provided the first-order and the second-order differences of g are all non-negative. The proof
is inspired from Property A.1 in Denuit and Mesfioui (2013) who established the following
useful result about the family {Xn,p, n ∈ N, p ∈ (0, 1)} of Binomially distributed random
variables with mean np and variance np(1− p): for any g : {0, . . . , n} → R, we have

∂

∂p
E[g(Xn,p)] = nE [∆g(Xn−1,p)] . (3.1)

As, given Lj1 = l, Lj1+1 is Binomially distributed with parameters l and px0+j1 , formula (3.1)
allows us to write

∂g?

∂px0+j1

(px0 , . . . , px0+d−1) =
n∑

l1=0

l1∑
l2=0

. . .

lj1−1∑
lj1+1=0

· · ·
ld−1∑
ld=0

∆j1+1g(l1, l2, . . . , ld)(
n

l1

)
pl1x0q

n−l1
x0

(
l1
l2

)
pl2x0+1q

l1−l2
x0+1 . . . lj1

(
lj1 − 1

lj1+1

)
p
lj1+1

x0+j1
q
lj1−lj1+1−1

x0+j1
. . .(

ld−1

ld

)
pldx0+d−1q

ld−1−ld
x0+d−1,

with the convention that the empty sum is zero. A similar reasoning shows that for every
j1 < j2

∂2

∂px0+j1∂px0+j2

g?(px0 , . . . , px0+d−1)

=
n∑

l1=0

l1∑
l2=0

. . .

lj1−1∑
lj1+1=0

. . .

lj2−1∑
lj2+1=0

· · ·
ld−1∑
ld=0

∆2
j1+1,j2+1g(l1, l2, . . . , ld)(

n

l1

)
pl1x0q

n−l1
x0

(
l1
l2

)
pl2x0+1q

l1−l2
x0+1 . . . lj1

(
lj1 − 1

lj1+1

)
p
lj1+1

x0+j1
q
lj1−lj1+1−1

x0+j1
. . .

. . . lj2

(
lj2 − 1

lj2+1

)
p
lj2+1

x0+j2
q
lj2−lj2+1−1

x0+j2
. . .

(
ld−1

ld

)
pldx0+d−1q

ld−1−ld
x0+d−1,

which ends the proof.

Given L̃k−1, L̃k is Binomially distributed with exponent L̃k−1 and success probability
P u
x0+k−1(t0 + k − 1). Unconditionally, L̃k is Binomially distributed with exponent n and

success probability kP
u
x0

(t0). However, given kP
u
x0

(t0), k = 1, 2, . . ., the random variables L̃k
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are not comonotonic. The second step now consists in making them perfectly conditionally
dependent, switching to

Luk =
n−1∑
i=0

I

[
U >

i∑
j=0

(
n

j

)(
kP

u
x0

(t0)
)j(

1− kP
u
x0

(t0)
)n−j]

(3.2)

where U is a unit uniform random variable independent of Z involded in the kP
u
x0

(t0). Note
that here, the same random variables U and Z are used to define all the Luk . However, the
Luk are not comonotonic as they depend on two random variables U and Z.

Proposition 3.2. For every integer d ≥ 2, we have (L1, . . . , Ld) �idir-cx (Lu1 , . . . , L
u
d).

Proof. Considering Proposition 3.1 and the transitivity of �idir-cx, we need to establish that
the stochastic inequality (L̃1, . . . , L̃d) �idir-cx (Lu1 , . . . , L

u
d) is valid. Given a supermodular

function g,

E[g(L̃1, . . . , L̃d)] = E
[
E[g(L̃1, . . . , L̃d)|Z]

]
≤ E

[
E[g(Lu1 , . . . , L

u
d)|Z]

]
≤ E[g(Lu1 , . . . , L

u
d)]

so that (L̃1, . . . , L̃d) �sm (Lu1 , . . . , L
u
d) holds, which ends the proof.

The present value of life annuity payments V can then be approximated by

V u =
∑
k≥1

Lukv(0, k).

Simulating V u only requires two independent realizations of unit uniform U and standard
Normal Z random variables. Proposition 3.2 allows us to compare V with V u in the �icx-
sense, as stated next.

Corollary 3.3. V �icx V
u.

Proof. It suffices to proceed as for Corollary 2.2.

Corollary 3.3 shows that replacing V with V u is a conservative strategy in the increasing
convex sense. This result is intuitive since it corresponds to the strategy where we increase the
conditional survival probabilities in the�icx-sense and simultaneously worsen the dependence
structure of the numbers of survivors into conditional comonotonicity.

4 Numerical illustrations

4.1 Assumptions

Here, we use the same αx and βx as in Denuit (2008), under the random walk with drift
model for the time index, that is,

κt = κt−1 + θ + ξt (4.1)

9



with independent errors ξt ∼ N or(0, σ2). The point estimate of the time index at time
t0 + k with all data available up to t0 is thus κt0 + kθ, which follows a straight line as a
function of the forecast horizon k, with slope θ. The conditional variance of the forecast
is kσ2. Therefore, the conditional standard errors for the forecast increase with the square
root of the distance to the forecast horizon k. Here, θ̂ = −0.4169175, σ̂2 = 0.3333644,
and κt0 = −7.79652. The constant technical interest rate is 3%. We consider portfolios of
size n = 100 (small), 1000 (medium) and 10000 (large) to illustrate the trade-off between
diversifiable risk and systematic risk. Finally, we consider x0 = 65, the usual retirement age.

4.2 Another approximation

In addition to the upper bounds for the survival probabilities and for the numbers of sur-
vivors proposed in the preceding sections, we also consider an approximation proposed by
Denuit and Dhaene (2007) which does not dominate its exact counterpart in the �icx-sense.
Precisely, considering the first-order approximation Λd =

∑d−1
j=0 δj exp(µj)Zj of Sd, define

Sld = E[Sd|Λd]

=
d−1∑
j=0

δj exp
(
µj + rj(d)σjZ +

1

2
(1− (rj(d))2)σ2

j

)
where ri(d), i = 0, . . . , d− 1, is the correlation coefficient between Λd and Zi, that is,

ri(d) =
Cov[Zi,Λd]

σiσΛd

=

∑d−1
j=0 δj exp(µj)Cov[Zi, Zj]

σi

√∑d−1
j=0

∑d−1
k=0 δjδk exp(µj + µk)βx+jβx+k min{j, k}σ2

where Cov[Zi, Zj] = βx0+iβx0+j min{i, j}σ2, with the convention r0(d) = 0. We then have
Sld �cx Sd.

Now, define

dP
l
x0

(t0) = exp(−Sld), d = 1, 2, . . .

Note that, again, the same random variable Z is used for all the values of d. As pointed out
by Denuit and Dhaene (2007), we have dP

l
x0

(t0) �icx dPx0(t0). However, these comparisons do
not extend to random vectors of conditional survival probabilities nor to linear combinations
of dP

l
x0

(t0) and dPx0(t0). Indeed, as shown in Denuit (2008), defining

alx(t0|Z) =
∑
d≥1

dP
l
x0

(t0)v(0, d),

we only have
E[ax0(t0|κ)] ≥ E[alx0(t0|Z)]. (4.2)

Considering the single crossing visible on Figure 4.2 in Denuit (2008), no �icx-comparison
generally holds between alx0(t0|Z) and ax0(t0|κ). It can be seen there that the quantiles of
alx0(t0|Z) are larger than the corresponding quantiles of ax0(t0|κ) after the unique crossing
point but the respective expected values contradict a possible �icx-ranking as the difference
in the stop-loss transforms must change sign at least once.
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We also consider V l defined by means of survivors Llk obtained from (3.2) with dP
l
x0

(t0)
replacing dP

u
x0

(t0). The same reasoning based on Figures 4.1-4.3 below shows that, in general,
V and V l cannot be ordered in the increasing convex sense as E[V ] ≥ E[V l] holds.

4.3 Results

We made 1 000 000 simulations of the future trajectory κ of the time index and of pairs
(U,Z) producing V u. Figures 4.1-4.3 display the distribution functions of V , V u and V l,
together with those of the large-portfolio approximations n × ax(t0|κ), n × aux(t0|Z) and
n× alx(t0|Z) for n = 100, 1000 and 10000, respectively.

We clearly see that the distribution function of V single crosses the distribution func-
tion of V u and dominates it after the crossing point, which confirms the increasing convex
inequality established in Corollary 3.3 as E[V u] = 1215.363 > E[V ] = 1215.232 for n = 100.
Despite the single crossing between the distribution functions of V and V l, no �icx-ranking
holds as E[V l] = 1215.219 < E[V ] = 1215.232. The same comments apply for larger n,
multiplying the expected values by 10 or by 100.

The unique crossing is also clearly visible between the distribution function of V and the
large portfolio approximations nax0(t0|κ), naux0(t0|Z) and nalx0(t0|Z). The single crossing
between the distribution functions of V and of nax0(t0|κ) confirms the stochastic inequality
nax0(t0|κ) �cx V . However, as

nE[alx0(t0|Z)] ≤ E[V ] ≤ nE[aux0(t0|Z)],

Figures 4.1-4.3 suggest different �icx-rankings between V and either naux0(t0|Z) or nalx0(t0|Z),
depending on the size of the portfolio. For n = 100, the unique crossing visible on Fig-
ure 4.1 together with the inequality between the respective expected values shows that
nalx0(t0|Z) �icx V holds, whereas for n = 10000, we see from Figure 4.3 that V �icx

naux0(t0|Z) is valid in the numerical example.
When the portfolio size n increases, we see that the distribution functions get closer.

Also, for n = 10000, the distribution functions of V and nax0(t0|κ) are nearly identical
but still exhibit the single crossing supporting the stochastic inequality nax0(t0|κ) �cx V .
However, we see from Figure 4.3 that the distribution functions of naux0(t0|Z) and nalx0(t0|Z)
are now both smaller than the distribution of V after the crossing point, suggesting that
these approximations are conservative in the right tail.

In addition to distribution functions, we also evaluate the accuracy of the approximation
by means of the quantile functions. Specifically, the relative differences between the VaRs of
V and V l or V u are depicted in Figures 4.4, 4.5, and 4.6. The quantiles of the approximation
V u and V l are quite close to the exact quantiles of V since their relative differences varies
between -5% and +5% when n = 100, -2% and +2% when n = 1000, and -1.5% and +1.5%
when n = 10000 for usual probability levels.

5 Discussion

This paper proposes approximations for the number of survivors when future mortality is
predicted by means of the Lee-Carter model. Accurate approximations for the present value
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Figure 4.1: Distribution function of V (—), of V u (- - -), of V l (· · · ) and of the large-portfolio
approximations n× ax(t0) (· - · - ·), n× aux(t0) (– – –) and n× alx(t0) (· – · – ·) for n = 100.
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Figure 4.2: Distribution function of V (—), of V u (- - -), of V l (· · · ) and of the large-portfolio
approximations n× ax(t0) (· - · - ·), n× aux(t0) (– – –) and n× alx(t0) (· – · – ·) for n = 1000.
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Figure 4.3: Distribution function of V (—), of V u (- - -), of V l (· · · ) and of the large-portfolio
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Figure 4.4: Relative differences between the quantiles of the approximations V u (- - -) , V l

(· · · ) and the quantiles of V for n = 100.
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Figure 4.5: Relative differences between the quantiles of the approximations V u (- - -) , V l

(· · · ) and the quantiles of V for n = 1000.
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Figure 4.6: Relative differences between the quantiles of the approximations V u (- - -) , V l

(· · · ) and the quantiles of V for n = 10000.
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of future benefits in a life annuity portfolio are then derived. This random variable plays a
key role in the pricing and reserving process so that the approximations developed here can
help insurers to speed their simulation routines in the Solvency 2 calculations.

Dickson and Waters (1999) and Sundt (1999, 2000) have derived algorithms for the calcu-
lation of the joint distribution of aggregate claims from a life insurance portfolio over several
time periods. The approach developed in the present paper can be seen as an alternative
to these recursive algorithms. By means of appropriate comonotonic approximations, we
replace the vector of annual aggregate claim amounts with a random vector with a much
simpler structure, whose joint distribution is easily derived.
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