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Abstract

In this paper we consider the semiparametric transformation model Λθo(Y ) = m(X) + ε, where θo

is an unknown finite dimensional parameter, the function m(·) = E(Λθo(Y )|X = ·) is “smooth” but

otherwise unknown, and the covariate X is independent of the error ε. An estimator of the distribution

function of ε is investigated and its weak convergence is proved. The proposed estimator depends on

a profile likelihood estimator of θo and a nonparametric kernel estimator of m. We also evaluate the

practical performance of our estimator in a simulation study for several models and sample sizes.
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1 Introduction

Consider a sample (X1, Y1), . . . , (Xn, Yn) of independent copies of a bivariate random vector (X,Y ), that

satisfies the semiparametric transformation model

Λθo(Y ) = m(X) + ε, (1.1)

where ε is independent of X and E(ε) = 0. Here, {Λθ : θ ∈ Θ} (with Θ ⊂ Rp compact) is a parametric family

of strictly increasing functions defined on an unbounded subset D of R, and m is the unknown regression

function belonging to an infinite dimensional parameter set M. We assume that M is a space of functions

endowed with the norm ‖ · ‖M = ‖ · ‖∞. We denote θo ∈ Θ and m ∈ M for the true unknown finite

and infinite dimensional parameters, and we define the function mθ(x) = E(Λθ(Y )|X = x) and the error

εθ = ε(θ) = Λθ(Y )−mθ(X) for arbitrary θ ∈ Θ. Clearly, mθo ≡ m.

Our objective in this paper is to estimate the cumulative distribution function (c.d.f.) Fε(t) = P(ε ≤ t).

Our estimation approach is based on a two-step strategy which, in a first step, replaces the unobserved

regression errors εi’s by semiparametric estimators ε̂i(θ̂) = Λθ̂(Yi) − m̂θ̂(Xi), where θ̂ and m̂θ̂ are suitable

estimators of θo and mθo respectively. In a second step, the distribution function Fε is estimated by the

empirical distribution function of the ε̂i(θ̂)’s as if they were the true errors. To estimate θo we use a profile

likelihood (PL) approach, developed in Linton, Sperlich and Van Keilegom (2008), whereas for each fixed θ,

mθ(x) is estimated by means of the Nadaraya-Watson (1964) method.

To the best of our knowledge, the estimation of the distribution of the error ε in model (1.1) has not

yet been investigated in the statistical literature. On the other hand, there exists a large literature on the

estimation of model (1.1) when the regression function m is parametric. This is motivated by the fact that

taking transformations of the data may induce normality and homoscedasticity of the error variance in the

transformed model. A major contribution to this methodology was made by Box and Cox (1964), who

proposed a parametric power family of transformations that includes the logarithm and the identity. Lots

of effort has been devoted to the investigation of the Box-Cox transformation since its introduction. See,

for example, Chen, Lockhart and Stephens (2002), Shin (2008), and Fitzenberger, Wilke and Zhang (2010)

for some of the more recent references. Other dependent variable transformations have been suggested, see

for example, Zellner and Revankar (1969), Manly (1976), Bickel and Doksum (1981), and the Arcsinh

transformation discussed in Johnson (1949) and more recently in Robinson (1991). See also the book

of Carroll and Ruppert (1988) and the review paper by Sakia (1992) for more details and references on

parametric transformation models.
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Over the last ten years a lot of research has been done on estimation and testing problems under model

(1.1) when Λθo is known and equals the identity function. The starting point was the seminal paper by

Akritas and Van Keilegom (2001), who studied the estimation of the error distribution under the model

Y = m(X) + σ(X)ε, (1.2)

i.e. a heteroscedastic version of model (1.1) with Λθo ≡ id. They showed the weak convergence of their

estimator of the error distribution. Their results were generalized by Neumeyer and Van Keilegom (2010) to

the case where the covariate is multi-dimensional, whereas Müller, Schick and Wefelmeyer (2004) investigated

linear functionals of the error distribution under this model. The estimator of Akritas and Van Keilegom

(2001) has been used in various testing problems related to model (1.2). See e.g. Neumeyer and Dette (2007),

Dette et al. (2007), Pardo-Fernández et al. (2007), Dette et al. (2009), Neumeyer and Pardo-Fernández

(2009), Heuchenne and Van Keilegom (2010), among many others. Tests for the validity of model (1.2) have

been developed in Einmahl and Van Keilegom (2008a,b) and Neumeyer (2009b), whereas the consistency

of a smooth bootstrap procedure has been shown by Neumeyer (2009a). Finally, model (1.2) has also been

applied in other contexts, like e.g. for estimating ROC curves (see González-Manteiga et al., 2011) and for

estimating the production frontier in efficiency analysis, where one analyzes how firms transform their inputs

to produce a set of outputs (see Florens et al., 2014).

A major element of our estimation procedure is the estimation of the parameter θo. As mentioned

before, we will make use of the results in Linton, Sperlich and Van Keilegom (2008) to this end. In the latter

paper, the authors propose two estimation approaches for θo. The first approach is a semiparametric profile

likelihood (PL) approach, whereas the second one is based on a ‘mean squared distance from independence

(MD)’-idea using the estimated distributions of X, εθ and (X, εθ). Linton, Sperlich and Van Keilegom (2008)

derived the asymptotic distributions of their estimators under certain regularity conditions, and proved that

both estimators of θo are asymptotically normal. The authors also showed that, in practice, the PL method

outperforms the MD method. For this reason, we focus in this paper on the PL method.

The remainder of the paper is organized as follows. In Section 2 we introduce some notations and give

the precise definition of our estimator of the error distribution. In Section 3 we present the main asymptotic

results of the paper, together with the assumptions under which they are valid. The results of a simulation

study are given in Section 4, while the proofs of the main results are collected in Section 5 and in two

appendices.
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2 The estimator

Our estimation procedure for the error distribution Fε exists of two steps. In a first step, we estimate the

finite dimensional parameter θo. This parameter is estimated by the profile likelihood (PL) method, studied

in Linton, Sperlich and Van Keilegom (2008). To this end, note that under model (1.1), we have

P (Y ≤ y|X) = P (Λθo(Y ) ≤ Λθo(y)|X) = P (εθo ≤ Λθo(y)−mθo(X)|X) = Fε (Λθ(y)−mθo(X)) .

Therefore

fY |X(y|x) = fε (Λθo(y)−mθo(x)) Λ′θo(y),

where fε and fY |X are the densities of ε, and of Y given X, respectively. Then, the log likelihood function

with respect to θ ∈ Θ is given by
n∑
i=1

{log fεθ (Λθ(Yi)−mθ(Xi)) + log Λ′θ(Yi)} ,

where fεθ is the density function of εθ. The idea of the PL method is to replace all unknown expressions in

the likelihood function by nonparametric kernel estimators. For this, let

m̂θ(x) =

∑n
i=1 Λθ(Yi)K1

(
Xi−x
h

)∑n
i=1K1

(
Xi−x
h

) (2.1)

be the Nadaraya-Watson (1964) estimator of mθ(x) based on the ‘responses’ Λθ(Yi), i = 1, . . . , n, and let

f̂εθ (t) =
1

ng

n∑
i=1

K2

(
ε̂i(θ)− t

g

)
(2.2)

be a kernel estimator of the density of ε(θ), where ε̂i(θ) = Λθ(Yi) − m̂θ(Xi). Here, K1 and K2 are kernel

functions and h and g are appropriate bandwidth sequences, tending to zero as n tends to infinity. This

leads to the following PL estimator of θo:

θ̂ = arg max
θ∈Θ

n∑
i=1

[
log f̂εθ (Λθ(Yi)− m̂θ(Xi)) + log Λ′θ(Yi)

]
. (2.3)

Since the estimator m̂θ(Xi) converges to mθ(Xi) at a slower rate for those Xi that are close to the boundary

of the support X of X, we assume implicitly that the estimator θ̂ trims the observations Xi that are outside

a subset X0 of X . Note that by doing so, we keep the root-n consistency of θ̂ proved in Linton, Sperlich and

Van Keilegom (2008).

Next, we use the estimator θ̂ to build the estimated residuals ε̂i(θ̂) = Λθ̂(Yi)− m̂θ̂(Xi). Then, our proposed

estimator F̂ε̂(t) for Fε(t) is defined by

F̂ε̂(t) =
1

n

n∑
i=1

1
(
ε̂i(θ̂) ≤ t

)
. (2.4)
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In order to obtain the asymptotic distribution of this estimator, we will also need the (unfeasible) estimator

F̂ε(t) = 1
n

∑n
i=1 1(εi ≤ t), based on the true, but unknown errors εi = εi(θo) = Λθo(Yi) −m(Xi). It will

turn out that both the expressions F̂ε̂(t)− F̂ε(t) and F̂ε(t)−Fε(t) contribute to the asymptotic distribution

of the estimator F̂ε̂(t) (see Section 3 for more details).

3 Asymptotic results

Before we give the main asymptotic results of this paper, we first need to introduce a number of notations,

and we also give the assumptions under which these results are valid.

3.1 Notations

We denote Xn = {(Xj , Yj) : j = 1, . . . , n} and FY |X(y|x) = P(Y ≤ y|X = x). When there is no

ambiguity possible, we use the abbreviated notations ε and m to indicate εθo and mθo . Throughout

the paper, N (θo) represents a neighborhood of θo. For the kernel Kj (j = 1, 2) and for any q, let

µ(q,Kj) =
∫
vqKj(v)dv and let K

(q)
j be the qth derivative of Kj . For any function ϕθ(y), denote ϕ̇θ(y) =

∂ϕθ(y)/∂θ = (∂ϕθ(y)/∂θ1, . . . , ∂ϕθ(y)/∂θp)
t and ϕ′θ(y) = ∂ϕθ(y)/∂y. Also, let ‖A‖ = (AtA)1/2 be the

Euclidean norm of any vector A. For any functions m̃, r, f , ϕ and q, and any θ ∈ Θ, let s = (m̃, r, f, ϕ, q),

sθ = (mθ, ṁθ, fεθ , f
′
εθ
, ḟεθ ), εi(θ, m̃) = Λθ(Yi)− m̃(Xi), and define

Gn(θ, s) = n−1
n∑
i=1

{
1

f{εi(θ, m̃)}

[
ϕ{εi(θ, m̃)}{Λ̇θ(Yi)− r(Xi)}+ q{εi(θ, m̃)}

]
+

Λ̇′θ(Yi)

Λ′θ(Yi)

}
,

G(θ, s) = E[Gn(θ, s)] and G(θo, sθo) = ∂
∂θG(θ, sθ)

∣∣
θ=θo

.

For any compact subset I in R with nonempty interior and for any α > 0 and 0 < M <∞, let C1+α
M (I)

represent the class of all differentiable functions d defined on I such that ‖d‖1+α ≤M , where

‖d‖1+α = max

{
sup
x
|d(x)|, sup

x
|d′(x)|

}
+ sup
x,x′

|d′(x)− d′(x′)|
|x− x′|α

,

and where all suprema are taken over I.

3.2 Technical assumptions

(A1) The function Kj (j = 1, 2) is symmetric, has compact support,
∫
vkKj(v)dv = 0 for k = 1, . . . , qj − 1

and
∫
vqjKj(v)dv 6= 0 for some qj ≥ 4, and Kj is twice continuously differentiable.
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(A2) The bandwidths h and g satisfy nh2q1 = o(1), ng2q2 = o(1), nhq1+1(log h−1)−1 →∞ and ng6(log g−1)−2

→∞ when n→∞ (where q1 and q2 are defined in (A1)).

(A3) (i) The support X of the covariate X is a compact subset of R, and X0 is a compact subset with

nonempty interior inside the interior of X .

(ii) The density fX is bounded away from zero and infinity on X , and is q1 − 1 times continuously differen-

tiable.

(A4) The function mθ(x) is continuously differentiable with respect to θ on X × N (θ0), and the functions

mθ(x) and ṁθ(x) are q1 times continuously differentiable with respect to x on X × N (θ0). All derivatives

are bounded, uniformly in (x, θ) ∈ X ×N (θo).

(A5) The error ε = Λθo(Y )−m(X) has finite fourth moment and is independent of X.

(A6) The distribution Fεθ|X(t|x) of εθ is three times continuously differentiable with respect to t and θ, and

sup
θ,t,x

∣∣∣∣∣ ∂k+`

∂tk∂θ`11 . . . ∂θ
`p
p

Fεθ|X(t|x)

∣∣∣∣∣ <∞
for all k and ` such that 0 ≤ k + ` ≤ 2, where ` = `1 + . . .+ `p and θ = (θ1, . . . , θp)

t.

(A7) (i) The transformation Λθ(y) is three times continuously differentiable with respect to both θ and y,

and there exists α > 0 such that

E

[
sup

θ′:‖θ′−θ‖≤α

∣∣∣∣∣ ∂k+`

∂yk∂θ`11 . . . ∂θ
`p
p

Λθ′(Y )

∣∣∣∣∣
]
<∞

for all θ ∈ Θ, and for all k and ` such that 0 ≤ k + ` ≤ 3, where ` = `1 + . . . + `p and θ = (θ1, . . . , θp)
t.

Moreover, supx∈X ‖E[Λ̇4
θo

(Y )|X = x]‖ <∞.

(ii) The density function of (Λ̇θ(Y ), X) exists and is continuous for all θ ∈ Θ.

(A8) For all η > 0, there exists ε(η) > 0 such that

inf
‖θ−θo‖>η

‖G(θ, sθ)‖ ≥ ε(η) > 0.

Moreover, the matrix G(θo, sθo) is non-singular.

(A9) E(Λθo(Y )) = 1, Λθo(0) = 0 and the set {x ∈ X0 : m′(x) 6= 0} has nonempty interior.

Assumptions (A1), part of (A2), (A3) (i) and part of (A3)(ii), (A4), (A6), part of (A7)(i) and (A8) are

used by Linton, Sperlich and Van Keilegom (2008) to show that the PL estimator θ̂ of θo is root n-consistent.
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Part of assumptions (A2), (A3) (ii) and (A7) (i), assumptions (A5) and (A7) (ii), are needed to obtain the

uniform convergence rates of the Nadaraya-Watson estimator m̂θ̂(x) and its derivatives with respect to x

and θ. Finally, (A9) is needed for identifying the model (see Vanhems and Van Keilegom (2013)).

3.3 Main results

The estimator F̂ε̂(t) is not a sum of independent terms. Therefore, we start by constructing an asymptotic

representation for F̂ε̂(t), which decomposes F̂ε̂(t) in essentially four parts. The first one equals the empirical

distribution function based on the true errors εi’s, the second and third parts account for the replacement

of the unknown mθo(Xi) and Λθo(Yi) in εi by m̂θ̂(Xi) and Λθ̂(Yi), while the last part is asymptotically

negligible.

Theorem 3.1. Assume (A1)-(A9). Then,

F̂ε̂(t)− Fε(t) = n−1
n∑
i=1

φθo(t,Xi, Yi) +Rn(t),

where sup{|Rn(t)| : −∞ < t < +∞} = oP(n−1/2),

φθo(t, x, y) = 1(∞,t](Λθo(y)−m(x))− Fε(t) + fε(t)(Λθo(y)−m(x)) + ρtθo(x, y)h(t),

1A(·) denotes the indicator function, θ̂−θo = 1
n

∑n
i=1 ρθo(Xi, Yi)+oP(n1/2) is the i.i.d. representation given

in Theorem 4.1 of Linton, Sperlich and Van Keilegom (2008), ρt denotes the transpose of ρ and

h(t) = E
[
∂

∂θ
Fεθ|X (t|X)

∣∣
θ=θo

]
.

We continue with the statement of the weak convergence of the process n1/2(F̂ε̂(t)−Fε(t)) (−∞ < t <

+∞).

Corollary 3.1. Suppose that the assumptions of Theorem 3.1 are satisfied. Then, the process Ẑn(t) =

n1/2[F̂ε̂(t)− Fε(t)], −∞ < t < +∞, converges weakly to a zero-mean Gaussian process Z(t) with covariance

function

Cov (Z(t), Z(t′)) = E (φθo(t,X, Y )φθo(t
′, X, Y )) .
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4 Simulations

In this section, the finite sample performance of our estimator F̂ε̂(t) is investigated. This is achieved through

simulations described hereunder. Consider the following transformation model:

Λθo(Y ) = b0 + b1X
2 + b2 sin(πX) + σeε, (4.1)

where Λθ is the Box-Cox (1964) transformation:

Λθ(y) =


yθ−1
θ , θ 6= 0,

log(y), θ = 0,

X is uniformly distributed on the interval [−1, 1] and ε is independent of X. For Fε(·), we study two situa-

tions: first, a standard normal distribution and, second, a mixture of the normal distributions N(−1.5, 0.25)

and N(1.5, 0.25) with equal weights. In each case, the distribution is truncated on [−3, 3] (namely, the

corresponding densities are put to zero outside the interval [−3, 3] but their integrals on this support are

equal to one). This allows generating only nonnegative Λθo(Yi), i = 1, . . . , n. Finally, θo = 0, 0.5 or 1. Three

different model settings are considered. For each of them, b2 = b0 − 3σe. The other parameters are chosen

as follows:

Model 1: b0 = 6.5, b1 = 5, σe = 1.5;

Model 2: b0 = 4.5, b1 = 3.5, σe = 1;

Model 3: b0 = 2.5, b1 = 2.5, σe = 0.5.

One hundred samples of sizes n = 100 and n = 200 are generated and the Epanechnikov kernel

K(x) = 15
16 (1 − x2)21(|x| ≤ 1) is used for both the estimators of the regression and the density functions.

For the estimation of θ0 and Fε(t), we proceed as follows. Let

Lθ(h, g) =

n∑
i=1

[
log f̂εθ (ε̂i(θ, h)) + log Λ′θ(Yi)

]
,

where ε̂i(θ, h) = Λθ(Yi)−m̂θ(Xi, h) and m̂θ(x, h) denotes m̂θ(x) constructed with bandwidth h. This function

will be maximized with respect to θ for given (optimal) values of (h, g). For each value of θ, h∗(θ) is obtained

by least squares cross-validation,

h∗(θ) = arg min
h

n∑
i=1

(Λθ(Yi)− m̂−i,θ(Xi))
2,

where

m̂−i,θ(Xi) =

∑n
j=1,j 6=i Λθ(Yj)K

(
Xj−Xi

h

)
∑n
j=1,j 6=iK

(
Xj−Xi

h

)
8



and g can be chosen with a classical bandwidth selection rule for kernel density estimation. Here, for sim-

plicity, the normal rule is used (ĝ(θ) = (40
√
π)1/5n−1/5σ̂ε̂(θ,h∗(θ)), where σ̂ε̂(θ,h∗(θ)) is the classical empirical

estimator of the standard deviation based on ε̂i(θ, h
∗(θ)), i = 1, . . . , n). The solution

θ̂ = arg max
θ
Lθ(h

∗(θ), ĝ(θ))

is therefore obtained iteratively (maximization problems are solved with the function ‘optimize’ in R with

h ∈ [0, 2] and θ ∈ [−20, 20]) and the estimator of Fε(t) is finally given by

F̂ε̂(t) =
1

n

n∑
i=1

1
(
ε̂i(θ̂, h

∗(θ̂)) ≤ t
)
.

Table 1 (respectively Tables 3 and 4) shows the bias, the variance (Var) and the mean squared error

(MSE) of the estimator F̂ε̃(t) of the distribution of the standardized error ε̃ = (Λθ̂(Y ) − m̂θ̂(X))/σe, for

t = −1, t = 0 and t = 1 (respectively t = −1.5, t = −1, t = 0, t = 1 and t = 1.5) and for the unimodal

(respectively bimodal) normal error distribution. Dividing by σe only aims at comparing models 1, 2 and 3

(modes are the same); in practice, if we would rather construct a standardized version of F̂ε̂(t), a (global)

estimator of σe should be introduced in the procedure. Moreover, Tables 2 and 5 show the integrated mean

squared error (IMSE) of F̂ε̃(t) for both assumed error distributions.

As expected, we can observe (in particular from Tables 2 and 5) that estimation improves for sample

sizes going from n = 100 to n = 200 and is better for the normal error density than for the mixture. These

tables also suggest that a larger σe globally leads to worse results. In these simulated examples, the best

results are clearly obtained for the logarithmic transformation and deteriorate when θ0 increases.

5 Proofs

5.1 Auxiliary results

This section states a number of results concerning the estimators m̂θ̂(x), m̂θo(x) and Λθ̂(Y ), which are

needed for proving Theorem 3.1. These results are of independent interest and their proofs can be found in

Appendix A.

Proposition 5.1. Assume (A1)-(A9). Then,

sup
x∈X0

|m̂θ̂(x)−mθo(x)| = OP((nh)−1/2(log h−1)1/2).
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Model θ0 n = 100 n = 200

F̂ε̃(−1) F̂ε̃(0) F̂ε̃(1) F̂ε̃(−1) F̂ε̃(0) F̂ε̃(1)

Bias -2.13 -0.74 2.33 -0.63 -0.68 0.66

θ0 = 0 Var 54.86 10.74 60.90 35.09 4.18 34.56

MSE 59.38 11.29 66.31 35.49 4.63 34.99

b0 = 6.5 Bias -2.20 -0.88 2.57 -0.40 -0.61 0.48

b1 = 5 θ0 = 0.5 Var 128.71 10.73 126.17 75.15 4.22 77.49

σe = 1.5 MSE 133.53 11.51 132.75 75.31 4.59 77.73

Bias -2.38 -0.87 2.90 -0.11 -0.59 0.31

θ0 = 1 Var 152.11 10.98 146.01 101.49 4.65 96.59

MSE 157.75 11.74 154.39 101.50 5.00 96.68

Bias -2.25 -0.74 2.34 -0.78 -0.64 0.62

θ0 = 0 Var 49.29 11.27 52.96 27.26 4.31 30.33

MSE 54.33 11.81 58.41 27.87 4.71 30.72

b0 = 4.5 Bias -1.86 -0.75 2.07 -0.47 -0.68 0.54

b1 = 3.5 θ0 = 0.5 Var 112.15 11.60 107.15 62.40 4.14 61.93

σe = 1 MSE 115.59 12.17 111.42 62.62 4.59 62.21

Bias -1.54 -0.76 2.08 -0.64 -0.64 0.65

θ0 = 1 Var 139.96 11.42 135.58 88.93 4.29 85.20

MSE 142.35 11.99 139.89 89.34 4.70 85.62

Bias -1.48 -0.52 1.29 -0.96 -0.69 0.71

θ0 = 0 Var 40.46 10.98 41.96 21.11 3.85 22.93

MSE 42.64 11.25 43.62 22.02 4.32 23.43

b0 = 2.5 Bias -1.55 -0.46 1.14 -0.91 -0.72 0.65

b1 = 2.5 θ0 = 0.5 Var 78.60 11.44 92.06 45.07 3.86 46.43

σe = 0.5 MSE 80.99 11.65 93.35 45.89 4.37 46.85

Bias -1.17 -0.58 1.25 -0.78 -0.76 0.55

θ0 = 1 Var 100.62 11.70 103.77 56.34 3.81 56.16

MSE 101.98 12.04 105.33 56.95 4.38 56.46

Table 1: Bias(F̂ε̃(t)) (×102), Var(F̂ε̃(t)) (×104) and MSE(F̂ε̃(t)) (×104) for different models, values of t and

sample sizes, when fε(·) is a standard normal density.

10



Model θ0 n = 100 n = 200

b0 = 6.5 θ0 = 0 28.20 15.78

b1 = 5 θ0 = 0.5 82.73 36.80

σe = 1.5 θ0 = 1 95.59 56.26

b0 = 4.5 θ0 = 0 25.13 13.04

b1 = 3.5 θ0 = 0.5 59.91 30.20

σe = 1 θ0 = 1 80.95 49.67

b0 = 2.5 θ0 = 0 20.54 10.25

b1 = 2.5 θ0 = 0.5 43.77 20.59

σe = 0.5 θ0 = 1 56.73 26.03

Table 2: IMSE(F̂ε̃(t)) (×104) for different models, values of t and sample sizes, when fε(·) is a standard

normal density.

Proposition 5.2. Under (A1)-(A9), we have

sup
x∈X0

|m̂′
θ̂
(x)−m′θo(x)| = OP((nh3)−1/2(log h−1)1/2).

Proposition 5.3. Assume (A1)-(A9). Then, for all δ ∈ (0, 1),

sup
x,x′∈X0

|m̂′
θ̂
(x)−m′θo(x)− m̂′

θ̂
(x′) +m′θo(x

′)|
|x− x′|δ

= OP((nh3+2δ)−1/2(log h−1)1/2).

Proposition 5.4. Let Varn(·) be the conditional variance given Xn and assume that (A1)-(A9) hold. Then,

Varn
[
1
(
Λθ̂(Y ) ≤ t+ m̂θ̂(X)

)
− 1 (Λθo(Y ) ≤ t+mθo(X))

]
= oP(1).

Proposition 5.5. Assume (A1)-(A9). Then,∫
(m̂θo(x)−mθo(x))dFX(x) = n−1

n∑
i=1

(Λθo(Yi)−mθo(Xi)) +
hq1

q1!
µ(q1,K1)E

[
m

(q1)
θo

(X)
]

+ oP(hq1),

where m
(q)
θo

(x) denotes the q−th derivative of mθo(x) with respect to x.
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Model θ0 n = 100

F̂ε̃(−1.5) F̂ε̃(−1) F̂ε̃(0) F̂ε̃(1) F̂ε̃(1.5)

Bias -4.83 -7.14 -0.09 5.45 3.84

θ0 = 0 Var 57.44 27.40 20.95 25.03 49.03

MSE 80.70 78.34 20.96 54.70 63.77

b0 = 6.5 Bias -8.33 -11.09 -0.14 9.43 7.85

b1 = 5 θ0 = 0.5 Var 106.59 83.41 20.55 87.30 101.71

σe = 1.5 MSE 175.98 206.34 20.57 176.18 163.33

Bias -9.03 -12.37 -0.09 10.37 8.30

θ0 = 1 Var 128.39 103.06 20.10 115.22 138.46

MSE 209.93 256.01 20.11 222.70 207.35

Bias -4.92 -7.45 -0.16 5.78 4.00

θ0 = 0 Var 52.07 33.71 20.04 30.88 46.08

MSE 76.28 89.17 20.06 64.25 62.08

b0 = 4.5 Bias -7.29 -9.96 -0.18 8.38 6.85

b1 = 3.5 θ0 = 0.5 Var 90.41 67.51 20.84 68.86 81.26

σe = 1 MSE 143.55 166.66 20.87 139.04 128.18

Bias -8.32 -11.09 -0.18 9.56 7.73

θ0 = 1 Var 109.51 85.19 20.67 91.99 102.16

MSE 178.74 208.12 20.71 183.33 161.91

Bias -5.73 -8.30 -0.22 7.00 5.39

θ0 = 0 Var 54.40 34.58 21.43 36.19 49.72

MSE 87.23 103.43 21.47 85.15 78.77

b0 = 2.5 Bias -6.81 -9.63 -0.30 8.14 6.29

b1 = 2.5 θ0 = 0.5 Var 82.54 59.52 21.04 53.56 75.14

σe = 0.5 MSE 128.92 152.21 21.13 119.78 114.70

Bias -7.71 -10.80 -0.25 9.35 7.31

θ0 = 1 Var 99.68 73.63 21.32 72.65 96.30

MSE 159.13 190.21 21.38 160.02 149.73

Table 3: Bias(F̂ε̃(t)) (×102), Var(F̂ε̃(t)) (×104) and MSE(F̂ε̃(t)) (×104) for different models, values of t and

n = 100, when fε(·) is a mixture of two normal densities (N(−1.5, 0.25), N(1.5, 0.25)) with equal weights.
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Model θ0 n = 200

F̂ε̃(−1.5) F̂ε̃(−1) F̂ε̃(0) F̂ε̃(1) F̂ε̃(1.5)

Bias -2.47 -3.93 0.01 3.22 1.82

θ0 = 0 Var 37.46 12.96 10.34 11.20 28.77

MSE 43.53 28.42 10.34 21.58 32.06

b0 = 6.5 Bias -4.69 -5.88 -0.02 4.72 4.43

b1 = 5 θ0 = 0.5 Var 81.25 33.96 10.38 32.59 73.38

σe = 1.5 MSE 103.20 68.51 10.38 54.89 93.01

Bias -5.57 -6.80 -0.04 5.45 5.45

θ0 = 1 Var 105.76 51.05 10.32 47.79 97.34

MSE 136.73 97.26 10.32 77.46 127.04

Bias -2.65 -4.20 0.04 3.42 1.95

θ0 = 0 Var 34.76 13.85 10.40 15.05 28.90

MSE 41.76 31.46 10.40 26.76 32.70

b0 = 4.5 Bias -4.18 -5.19 0.02 4.25 3.76

b1 = 3.5 θ0 = 0.5 Var 66.39 24.66 10.32 24.88 55.59

σe = 1 MSE 83.86 51.62 10.32 42.92 69.69

Bias -4.73 -6.06 0.00 4.91 4.40

θ0 = 1 Var 86.47 36.52 10.39 37.13 77.11

MSE 108.80 73.27 10.39 61.21 96.47

Bias -2.73 -4.42 -0.07 3.72 2.52

θ0 = 0 Var 26.57 10.74 10.01 10.44 22.37

MSE 34.00 30.30 10.02 24.26 28.70

b0 = 2.5 Bias -3.60 -4.91 -0.07 4.17 3.26

b1 = 2.5 θ0 = 0.5 Var 48.62 17.48 10.07 16.90 38.65

σe = 0.5 MSE 61.54 41.61 10.08 34.27 49.28

Bias -4.10 -5.28 -0.08 4.45 3.79

θ0 = 1 Var 57.91 21.34 10.01 21.46 47.42

MSE 74.68 49.24 10.02 41.28 61.78

Table 4: Bias(F̂ε̃(t)) (×102), Var(F̂ε̃(t)) (×104) and MSE(F̂ε̃(t)) (×104) for different models, values of t and

n = 200, when fε(·) is a mixture of two normal densities (N(−1.5, 0.25), N(1.5, 0.25)) with equal weights.
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Model θ0 n = 100 n = 200

b0 = 6.5 θ0 = 0 35.86 17.80

b1 = 5 θ0 = 0.5 80.74 38.92

σe = 1.5 θ0 = 1 105.91 51.24

b0 = 4.5 θ0 = 0 37.23 17.19

b1 = 3.5 θ0 = 0.5 66.28 30.42

σe = 1 θ0 = 1 83.10 40.66

b0 = 2.5 θ0 = 0 43.50 14.87

b1 = 2.5 θ0 = 0.5 65.54 23.19

σe = 0.5 θ0 = 1 81.86 27.40

Table 5: IMSE(F̂ε̃(t)) (×104) for different models, values of t and sample sizes, when fε(·) is a mixture of

two normal densities (N(−1.5, 0.25), N(1.5, 0.25)) with equal weights.

Proposition 5.6. Assume (A1)-(A9). Then,

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )−mθo(X) ≤ t)

= n−1
n∑
i=1

εifε(t) + (θ̂ − θo)th(t) + hq1
fε(t)

q1!
µ(q1,K1)E

[
m

(q1)
θo

(X)
]

+Rn(t),

where sup{|Rn(t)| : t ∈ R} = o(hq1) + oP(n−1/2).

The proofs of these propositions are given in Appendix A.

5.2 Proofs of the main results

This section contains the proofs of Theorem 3.1 and Corollary 3.1. Some technical results needed in the

proof of Theorem 3.1 are deferred to Appendices A and B.
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Proof of Theorem 3.1

The result of the theorem directly follows from Lemma 1 in Appendix B and Proposition 5.6. Indeed, using

the latter results and the notations in the statement of the theorem, we have

F̂ε̂(t)− Fε(t) = n−1
n∑
i=1

{1 (Λθo(Y )−mθo(X) ≤ t)− Fε(t)}

+ P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )−mθo(X) ≤ t) + oP(n−1/2)

= n−1
n∑
i=1

{1 (εi ≤ t)− Fε(t)}

+ n−1
n∑
i=1

εifε(t) + (θ̂ − θo)th(t) + oP(n−1/2),

where the last term oP(n−1/2) is uniform in t. 2

Proof of Corollary 3.1

To show the weak convergence of the process Ẑn(t) (−∞ < t < +∞), we make use of the techniques

developed in Van der Vaart and Wellner (1996), involving the theory of bracketing numbers. In particular,

we will show that (see Theorem 2.5.6 in that book)∫ ∞
0

√
logN[](ε,F , L2(P ))dε <∞, (5.1)

where N[] is the bracketing number, P is the probability measure corresponding to the joint distribution of

(X,Y ), L2(P ) is the L2-norm, and

F = {φθo(t,X, Y ) : −∞ < t < +∞} .

Proving this entails that the class F is Donsker and hence the weak convergence of the given process follows

from pp. 81-82 in Van der Vaart and Wellner’s book. The two last terms of φθo(t,X, Y ) are the product of a

random factor that is independent of t and a deterministic function, while the term 1[Λθo(Y )−mθo(X) ≤ t]

is decreasing in Λθo(Y )−mθo(X). Hence, O(exp(Kε−1)) brackets are needed for this term by Theorem 2.7.5

in the aforementioned book. This concludes the proof, since the integration in (5.1) can be restricted to the

interval [0, 2M ], if the functions in the class F are bounded by M (for ε > 2M we take N[](ε,F , L2(P )) = 1).

2

Appendix A. Proof of the auxiliary results

This appendix presents the proof of the propositions stated in Section 5.
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Proof of Proposition 5.1

Let cn = (nh)−1/2(log h−1)1/2 and write

m̂θ̂(x)−mθo(x) = (m̂θo(x)−mθo(x)) +
(
m̂θ̂(x)− m̂θo(x)

)
.

We need to show that each of the above terms is OP(cn) uniformly in x ∈ X0. The term m̂θo(x)−mθo(x) is

treated by Lemma 2 in Appendix B. Consider m̂θ̂(x) − m̂θo(x). Since θ̂ − θo = OP(n−1/2) by Theorem 4.1

in Linton, Sperlich and Van Keilegom (2008), a Taylor expansion applied to the function θ → m̂θ(x), yields

(to simplify notations, we assume here that p = dim(θ) = 1)

m̂θ̂(x)− m̂θo(x) = (θ̂ − θo) ˙̂mθo(x) +
1

2
(θ̂ − θo)2 ¨̂mθ∗(x)

= OP(n−1/2)(nhf̂X(x))−1
n∑
i=1

Λ̇θo(Yi)K1

(
Xi − x
h

)

+ OP(n−1)(nhf̂X(x))−1
n∑
i=1

Λ̈θ∗(Yi)K1

(
Xi − x
h

)
, (A.2)

where θ∗ is an intermediate value between θo and θ̂, and where f̂X(x) = (nh)−1
∑n
j=1K1(

Xj−x
h ). Moreover,

by Lemma 2 (in Appendix B), (A7)(i) and the Markov inequality, it can be shown that

(nhf̂X(x))−1
n∑
i=1

Λ̇θo(Yi)K1

(
Xi − x
h

)
= OP(1), (nhf̂X(x))−1

n∑
i=1

Λ̈θ∗(Yi)K1

(
Xi − x
h

)
= OP(h−1),

uniformly in x ∈ X0. Substituting these orders in (A.2), gives

m̂θ̂(x)− m̂θo(x) = OP(n−1/2) = OP(cn),

uniformly in x ∈ X0 under (A2). This completes the proof of the proposition. 2

Proof of Proposition 5.2

Let c′n = (log h−1)1/2(nh3)−1/2 and write

m̂′
θ̂
(x)−m′θo(x) = (m̂′θo(x)−m′θo(x)) + (m̂′

θ̂
(x)− m̂′θo(x)). (A.3)

We need to show that each of the above terms is OP(c′n) uniformly in x ∈ X0. Consider the first term

of (A.3) and note that E[Λ4
θo

(Y )|X = x] ≤ C
(
|mθo(x)|4 + E[ε4]

)
, for some C > 0. Since E[ε4] < ∞, the

compactness of X0 and the continuity of mθo ensure that E[Λ4
θo

(Y )|X = x] <∞ uniformly in x ∈ X0. Then

using arguments similar to Theorem 2 in Einmahl and Mason (2005) and Lemma 2 in Appendix B (extended
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to derivatives with respect to x) leads to supx |m̂′θo(x)−m′θo(x)| = OP(c′n). For the second term of (A.3), we

have similarly to the proof of Theorem 5.1 (for some θ∗ between θo and θ̂ and p = 1 to simplify notations)

m̂′
θ̂
(x)− m̂′θo(x) = (θ̂ − θo) ˙̂m

′
θo(x) + (θ̂ − θo)2 ¨̂m

′
θ∗(x)

= (θ̂ − θo)
d

dx

[∑n
i=1 Λ̇θo(Yi)K1

(
Xi−x
h

)∑n
i=1K1

(
Xi−x
h

) ]

+
(θ̂ − θo)2

2

f̂X(x) ∂
∂xR(Λ̈θ∗ , x)−R(Λ̈θ∗ , x)f̂ ′X(x)

f̂2
X(x)

, (A.4)

where R(Λ, x) = 1
nh

∑n
i=1 Λ(Yi)K1

(
Xi−x
h

)
. Since θ̂ − θo = OP(n−1/2) by Theorem 4.1 of Linton, Sperlich

and Van Keilegom (2008), the first term on the right hand side of the above expression is OP(n−1/2) using

the same arguments as above (Einmahl and Mason (2005) and Lemma 2 in Appendix B) applied to the data

Λ̇θo(Yi), i = 1, . . . , n, while the second term is treated with assumptions (A3)(ii), (A7)(i) and the Markov

inequality. This finishes the proof. 2

Proof of Proposition 5.3

Let c̃n = (log h−1)1/2(nh3+2δ)−1/2, dn(x) = m̂θ̂(x)−mθo(x) and define βn(x, x′) = |x−x′|−δ|d′n(x)−d′n(x′)|.

We need to show that supx,x′ |βn(x, x′)| = OP(c̃n). Note that by Proposition 5.2 the result is straightforward

when |x− x′| ≥ Ch, for some C > 0. Let us now consider x and x′ such that |x− x′| ≤ Ch. Then a Taylor

expansion applied to |d′n(x)− d′n(x′)| gives

|βn(x, x′)|1 (|x− x′| ≤ Ch) ≤ 1 (|x− x′| ≤ Ch) |x− x′|1−δ sup
x
|d′′n(x)|

≤ (Ch)1−δ sup
x
|d′′n(x)|,

so that the result of the proposition holds if supx |d′′n(x)| = OP((log h−1)1/2(nh5)−1/2). For this, arguments

similar to Einmahl and Mason (2005) and Lemma 2 in Appendix B (used in the same way as in Proposition

5.2) enable to show that m̂′′θo(x) − m′′θo(x) = OP((log h−1)1/2(nh5)−1/2) uniformly in x. Moreover, in a

completely similar way as done for (A.4) in the proof of Proposition 5.2, it can be shown that m̂′′
θ̂
(x) −

m̂′′θo(x) = OP((log h−1)1/2(nh5)−1/2) uniformly in x. This finishes the proof of the proposition. 2
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Proof of Proposition 5.4

Write

Varn
[
1
{

Λθ̂(Y ) ≤ t+ m̂θ̂(X)
}
− 1 {Λθo(Y ) ≤ t+mθo(X)}

]
≤ 2Varn

[
1
{

Λθ̂(Y ) ≤ t+mθo(X) + dn(X)
}
− 1 {Λθo(Y ) ≤ t+mθo(X) + dn(X)}

]
+ 2Varn [1 {Λθo(Y ) ≤ t+mθo(X) + dn(X)} − 1 {Λθo(Y ) ≤ t+mθo(X)}] . (A.5)

We will show that each of the above terms is oP(1) as n → ∞. For the first term of (A.5), let Anθ̂(x) =

t+mθo(x) + dn(x), Φn(θ, x, y) = P(Y ≤ Vθ(y)|x,Xn), Vθ(y) = Λ−1
θ (y) for all θ ∈ Θ and write

Varn
[
1
{

Λθ̂(Y ) ≤ t+mθo(X) + dn(X)
}
− 1 {Λθo(Y ) ≤ t+mθo(X) + dn(X)}

]
≤ E

[(
1
{

Λθ̂(Y ) ≤ Anθ̂(X)
}
− 1

{
Λθo(Y ) ≤ Anθ̂(X)

})2 |Xn

]
=

∫
|FY |X(Vθ̂(Anθ̂(x))|x,Xn)− FY |X(Vθo(Anθ̂(x))|x,Xn)|dFX(x)

= (θ̂ − θo)t
∫
| ∂
∂θ

FY |X(Vθ(Anθ̂(x))|x,Xn)
y
θ=θ∗

|dFX(x),

for some θ∗ between θo and θ̂. This term is thus oP(1) by (A6) and the fact that θ̂ − θo = OP(n−1/2).

Consider now the second term of (A.5).

Varn [1 (Λθo(Y ) ≤ t+mθo(X) + dn(X))− 1 (Λθo(Y ) ≤ t+mθo(X))]

≤ E
[
{1 (Y ≤ Vθo(t+mθo(X) + dn(X)))− 1 (Y ≤ Vθo(t+mθo(X)))}2 |Xn

]
=

∫
|FY |X(Vθo(t+mθo(x) + dn(x))|x,Xn)− FY |X(Vθo(t+mθo(x))|x)|dFX(x)

≤ K sup
x
|dn(x)| sup

θ,x,y

∣∣∣∣ ∂∂yFY |X (Vθ(y)|x)

∣∣∣∣ ,
for some K > 0. This term is oP(1), since supx |dn(x)| = oP(1) uniformly in x. This finishes the proof. 2

Proof of Proposition 5.5

Let cn = (nh)−1/2(log h−1)1/2 and note that∫
(m̂θo(x)−mθo(x))dFX(x)

=

∫
f̂X(x)

fX(x)
(m̂θo(x)−mθo(x))dFX(x) +

∫ (
fX(x)− f̂X(x)

fX(x)

)
(m̂θo(x)−mθo(x))dFX(x)

= An +Bn, (A.6)
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where f̂X(x) = (nh)−1
∑n
j=1K1(

Xj−x
h ). For the first term above, write

An =

∫
f̂X(x)

fX(x)
(m̂θo(x)−mθo(x))dFX(x)

= (nh)−1
n∑
i=1

∫
(Λθo(Yi)−mθo(x))K1

(
Xi − x
h

)
dFX(x)

fX(x)

= (nh)−1
n∑
i=1

∫
(Λθo(Yi)−mθo(Xi))K1

(
Xi − x
h

)
dx

+ (nh)−1
n∑
i=1

∫
(mθo(Xi)−mθo(x))K1

(
Xi − x
h

)
dx

= A1n +A2n. (A.7)

Next,

A1n = (nh)−1
n∑
i=1

∫
(Λθo(Yi)−mθo(Xi))K1

(
Xi − x
h

)
dx

= n−1
n∑
i=1

(Λθo(Yi)−mθo(Xi)). (A.8)

For the second term of (A.7), a Taylor expansion applied to mθo(·) yields

A2n = (nh)−1
n∑
i=1

∫
(mθo(Xi)−mθo(x))K1

(
Xi − x
h

)
dx

= n−1
n∑
i=1

∫
(mθo(Xi)−mθo(Xi − vh))K1(v)dv

=
hq1

q1!
n−1

n∑
i=1

m
(q1)
θo

(Xi)

∫
vq1K1(v)dv + oP(hq1). (A.9)

Hence by (A.9), (A.8), (A.7) and (A.6), the result of the proposition holds since Bn = oP(hq1) by assumption

(A2). 2

Proof of Proposition 5.6

Let cn = (nh)−1/2(log h−1)1/2 and write

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )−mθo(X) ≤ t)

= [P (Λθo(Y )− m̂θo(X) ≤ t|Xn)− P (Λθo(Y )−mθo(X) ≤ t)]

+
[
P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )− m̂θo(X) ≤ t|Xn)

]
. (A.10)
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Consider the first term above. By Lemma 2 in Appendix B, we have m̂θo(x) −mθo(x) = OP(cn) uniformly

in x. Then, applying a Taylor expansion to FY |X(Vθo(·)|x) and using assumption (A6),

FY |X (Vθo(t+ m̂θo(x))|x,Xn)− FY |X (Vθo(t+mθo(x))|x) = (m̂θo(x)−mθo(x))
∂

∂t
FY |X(Vθo(t+mθo(x))|x)

+OP(c2n),

where the term OP(c2n) is uniform in t and x. Therefore, since fε(t) = ∂
∂tFY |X(Vθo(t + mθo(x))|x) for all x

and c2n = o(hq1),

P (Λθo(Y )− m̂θo(X) ≤ t|Xn)− P (Λθo(Y )−mθo(X) ≤ t)

=

∫
[FY |X (Vθo(t+ m̂θo(x))|x,Xn)− FY |X (Vθo(t+mθo(x))|x)]dFX(x)

=

∫
(m̂θo(x)−mθo(x))

∂

∂t
FY |X(Vθo(t+mθo(x))|x)dFX(x) +OP(c2n)

= fε(t)

∫
(m̂θo(x)−mθo(x))dFX(x) +OP(c2n)

= fε(t)n
−1

n∑
i=1

εi +
hq1

q1!
fε(t)µ(q1,K1)E[m

(q1)
θo

(X)] + oP(hq1), (A.11)

using Proposition 5.5 and where oP(hq1) is uniform in t. For the second term of (A.10), let Φt(θ, x, y,Xn) =

FY |X(Vθ(t + y)|x,Xn). Then, applying a Taylor expansion to the function θ → Φt(θ, x, m̂θ(x),Xn) and

using (A6) and (A7)(i), we have

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )− m̂θo(X) ≤ t|Xn)

=

∫
[Φt(θ̂, x, m̂θ̂(x),Xn)− Φt(θo, x, m̂θo(x)Xn)]dFX(x)

= (θ̂ − θo)t
∫

d

dθ
Φt(θ, x, m̂θ(x),Xn)

y
θ=θo

dFX(x) + oP(n−1/2)

= (θ̂ − θo)t
∫

d

dθ
[Φt(θ, x, m̂θ(x),Xn)− Φt(θ, x,mθ(x))]

y
θ=θo

dFX(x)

+ (θ̂ − θo)t
∫

d

dθ
Φt(θ, x,mθ(x))

y
θ=θo

dFX(x) + oP(n−1/2)

= An +Bn + oP(n−1/2),

where oP(n−1/2) is uniform in t. Using the uniform consistency of m̂θo(x) and ˙̂mθo(x) stated in Lemma 2

(Appendix B) and (A6),

An = (θ̂ − θo)t
∫

d

dθ
[Φt(θ, x, m̂θ(x)|Xn)− Φt(θ, x,mθ(x))]

y
θ=θo

dFX(x) = oP(n−1/2).
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Therefore

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )− m̂θo(X) ≤ t|Xn) = Bn + oP(n−1/2)

= (θ̂ − θo)t
∫

d

dθ
Φt(θ, x,mθ(x))

y
θ=θo

dFX(x) + oP(n−1/2)

= (θ̂ − θo)tE
[
d

dθ
FY |X (Vθ(t+mθ(X))|X)

y
θ=θo

]
+ oP(n−1/2)

= (θ̂ − θo)th(t) + oP(n−1/2),

where the term oP(n−1/2) is uniform in t ∈ R. The result of the proposition now follows from the above

equality, (A.11) and (A.10). 2

Appendix B

We start this appendix with a technical result needed in the proof of Theorem 3.1.

Lemma 1. Assume (A1)-(A9). Then,

n−1
n∑
i=1

{
1
(
Λθ̂(Yi)− m̂θ̂(Xi) ≤ t

)
− 1 (Λθo(Yi)−mθo(Xi) ≤ t)

−P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
+ P (Λθo(Y )−mθo(X) ≤ t)

}
= oP(n−1/2),

uniformly for t ∈ R.

Proof

Note that Λθ̂(Y )− m̂θ̂(X) = Λθ̂(Y )−mθo(X)− dn(X), where dn(X) = m̂θ̂(X)−mθo(X). The proof of the

lemma is based on results in Van der Vaart and Wellner (1996). Define

F1 =

{
(x, y)→ 1 (Λθ(y) ≤ t+mθo(x) + d(x)) , Λθ : R→ R strictly increasing,

θ ∈ Θ, t ∈ R and d ∈ C1+δ
1 (X0)

}
.

We observe that by Propositions 5.1, 5.2 and 5.3, we have P
(
dn ∈ C1+δ

1 (X0)
)
→ 1 as n→∞. In a first step,

we will show that the class F1 is Donsker. From Theorem 2.5.6 in Van der Vaart and Wellner (1996), it

follows that it suffices to show that∫ ∞
0

√
logN[](ε̄,F1, L2(P ))dε̄ <∞, (B.1)
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where N[] is the bracketing number, P is the probability measure corresponding to the joint distribution of

(Y,X), and L2(P ) is the L2-norm.

Embed Θ into a hypercube [θ`1, θ
u
1 ] × · · · × [θ`p, θ

u
p ] of dimension p, and for each j = 1, . . . , p, let θ`j =

θ0j ≤ θ1j ≤ . . . ≤ θmjj = θuj partition the finite interval [θ`j , θ
u
j ] into mj = O(ε̄−2) intervals of length

O(ε̄2). This results in a partition of Θ into at most
∏p
j=1mj = O(ε̄−2p) hypercubes, which we denote by Ri,

i = 1, . . . ,
∏p
j=1mj . For each nonempty Ri, let Γ`i(Y ) = minθ∈Ri∩Θ Λθ(Y ) and Γui (Y ) = maxθ∈Ri∩Θ Λθ(Y ).

For the class C1+δ
1 (X0), Corollary 2.7.2 in Van der Vaart and Wellner (1996) ensures that

log r := logN[]

(
ε̄2, C1+δ

1 (X0), ‖ · ‖∞
)
≤ Kε̄−2/(1+δ),

for some K > 0.

Let d`1 ≤ du1 , . . . , d`r ≤ dur be the functions defining the r brackets for the class C1+δ
1 (X0). Then, for each

θ ∈ Θ and each d ∈ C1+δ
1 (X0), there exist i and j such that

1
{

Γui (Y ) ≤ t+mθo(X) + d`j(X)
}

≤ 1 {Λθ(Y ) ≤ t+mθo(X) + d(X)}

≤ 1
{

Γ`i(Y ) ≤ t+mθo(X) + duj (X),
}
.

Define

pu`ij (t) = P
(
Γui (Y ) ≤ t+mθo(X) + d`j(X)

)
and let tu`ijk, k = 1, . . . , O(ε̄−2), partition the line in segments having pu`ij -probability less than or equal to a

fraction of ε̄2. Similarly, define

p`uij (t) = P
(
Γ`i(Y ) ≤ t+mθo(X) + duj (X)

)
and let t`uijk, k = 1, . . . , O(ε̄−2), partition the line in segments having p`uij -probability less than or equal to a

fraction of ε̄2. Let us now define the following brackets for t:

tu`ijk1 ≤ t ≤ t
`u
ijk2 ,

where tu`ijk1 is the largest of the tu`ijk with the property of being less than or equal to t, and t`uijk2 is the smallest

of the t`uijk with the property of being larger than or equal to t. We will now show that the ε̄-brackets for

our function are given by

1
{

Γui (Y ) ≤ tu`ijk1 +mθo(X) + d`j(X)
}

≤ 1 {Γ(Y ) ≤ t+mθo(X) + d(X)}

≤ 1
{

Γ`i(Y ) ≤ t`uijk2 +mθo(X) + duj (X)
}
.
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To this end, let us calculate

∥∥1{Γ`i(Y ) ≤ t`uijk2 +mθo(X) + duj (X)
}
− 1

{
Γui (Y ) ≤ tu`ijk1 +mθo(X) + d`j(X)

}∥∥2

2

= P
(
Γ`i(Y ) ≤ t`uijk2 +mθo(X) + duj (X)

)
− P

(
Γui (Y ) ≤ tu`ijk1 +mθo(X) + d`j(X)

)
= p`uij (t)− pu`ij (t) +O(ε2),

where ‖ · ‖2 = ‖ · ‖P,2 is the L2(P )-norm. Since Γ`i(y) and Γui (y), i = 1, . . . ,
∏p
j=1mj , are strictly increasing

continuous functions of y ∈ R, they have inverse functions Γ`
−1

i (·) and Γu
−1

i (·). Moreover, it is easy to check

that Γ`
−1

i (·) = maxθ∈Ri Vθ(·) and Γu
−1

i (·) = minθ∈Ri Vθ(·). Therefore,

p`uij (t)− pu`ij (t)

=

∫ [
P
{

Γ`i(Y ) ≤ t+mθo(x) + duj (x)|X = x
}
− P

{
Γui (Y ) ≤ t+mθo(x) + d`j(x)|X = x

} ]
dFX(x)

=

∫ [
FY |X(Γ`

−1

i (t+mθo(x) + duj (x))|x)− FY |X(Γu
−1

i (t+mθo(x) + duj (x))|x)

+FY |X(Γu
−1

i (t+mθo(x) + duj (x))|x)− FY |X(Γu
−1

i (t+mθo(x) + d`j(x))|x)
]
dFX(x)

≤
∫ [ p∑

q=1

sup
θ∈Θ,y∈R

∣∣∣∂FY |X(Vθ(t+mθo(x) + y)|x)

∂θq

∣∣∣ε̄2 + sup
θ∈Θ,y∈R

∣∣∣∂FY |X(Vθ(t+mθo(x) + y)|x)

∂y

∣∣∣ε̄2

]
dFX(x)

= O(ε̄2),

using assumption (A6). That leads to

∥∥1{Γ`i(Y ) ≤ t`uijk2 +mθo(X) + duj (X)
}
− 1

{
Γui (Y ) ≤ tu`ijk1 +mθo(X) + d`j(X)

}∥∥2

2
= O(ε̄2).

Hence, for each ε̄ > 0, we need at most O(ε̄−2(p+1) exp(Kε̄−2/(1+δ))) brackets (for some K > 0) to cover

the class F1. However, for ε̄ > 1, one bracket suffices. So we have∫ ∞
0

√
logN[](ε̄,F1, L2(P ))dε̄ <∞,

which gives (B.1). This shows that the class F1 is Donsker, and hence by straightforward calculations,

F =

{
(x, y)→ 1 (Λθ(y) ≤ t+mθo(x) + d(x))− 1 (Λθo(y) ≤ t+mθo(x))

−P (Λθ(Y ) ≤ t+mθo(X) + d(X)) + P (Λθo(Y ) ≤ t+mθo(X)) , θ ∈ Θ, t ∈ R, d ∈ C1+δ
δ (X0)

}
is a Donsker class as well.

23



Next, observe that for dn(X) = m̂θ̂(X)−mθo(X), Proposition 5.4 ensures that

Varn

[
1
(
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)

)
− 1 (Λθo(Y ) ≤ t+mθo(X))

−P
(
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)|Xn

)
+ P (Λθo(Y ) ≤ t+mθo(X))

]
= Varn

[
1
(
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)

)
− 1 (Λθo(Y ) ≤ t+mθo(X))

]
= oP(1)

as n→∞. Since the class F is Donsker, it then follows from Corollary 2.3.12 in Van der Vaart and Wellner

(1996) that

lim
α↓0

lim sup
n→∞

P

(
sup

f∈F ,Var(f)<α

n−1/2

∣∣∣∣∣
n∑
i=1

f(Xi)

∣∣∣∣∣ > ε̄

)
= 0,

for each ε̄ > 0. Hence by restricting the supremum inside the above probability to the elements in F

corresponding to d(X) = dn(X) as defined above, the result of the lemma follows. 2

Lemma 2. Assume (A1)-(A5) and (A7). Then,

sup
x∈X0

|m̂θo(x)−mθo(x)| = OP((nh)−1/2(log h−1)1/2),

sup
x∈X0

| ˙̂mθo(x)− ṁθo(x)| = OP((nh)−1/2(log h−1)1/2).

Proof

We only give the proof for the uniform consistency of ˙̂mθo(x)− ṁθo(x), the proof for m̂θo(x)−mθo(x) being

very similar. Let cn = (nh)−1/2(log h−1)1/2, and define

˙̂rθo(x) =
1

nh

n∑
j=1

Λ̇θo(Yj)K1

(
Xj − x
h

)
, ṙθo(x) = E[ ˙̂rθo(x)], fX(x) = E[f̂X(x)],

where f̂X(x) = (nh)−1
∑n
j=1K1(

Xj−x
h ). Then,

sup
x∈X0

| ˙̂mθo(x)− ṁθo(x)| ≤ sup
x∈X0

∣∣∣∣ ˙̂mθo(x)− ṙθo(x)

fX(x)

∣∣∣∣+ sup
x∈X0

1

fX(x)

∣∣ṙθo(x)− fX(x)ṁθo(x)
∣∣ . (B.2)

Since E[Λ̇4
θo

(Y )|X = x] < ∞ uniformly in x ∈ X by assumption (A7), a similar proof as was given for

Theorem 2 in Einmahl and Mason (2005) ensures that

sup
x∈X0

∣∣∣∣ ˙̂mθo(x)− ṙθo(x)

fX(x)

∣∣∣∣ = OP (cn) .
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Consider now the second term of (B.2). Since E[ε̇(θo)|X] = 0, where ε̇(θo) = d
dθ (Λθ(Y ) −mθ(X))|θ=θo , we

have

ṙθo(x) = h−1E
[
{ṁθo(X) + ε̇(θo)}K1

(
X − x
h

)]
= h−1E

[
ṁθo(X)K1

(
X − x
h

)]
=

∫
ṁθo(x+ hv)K1(v)fX(x+ hv)dv,

from which it follows that

ṙθo(x)− fX(x)ṁθo(x) =

∫
[ṁθo(x+ hv)− ṁθo(x)]K1(v)fX(x+ hv)dv.

Hence, Taylor expansions applied to ṁθo(·) and fX(·) yield

sup
x∈X0

∣∣ṙθo(x)− fX(x)ṁθo(x)
∣∣ = O(hq1) = O (cn) ,

since nh2q1+1(log h−1)−1 = O(1) by (A2). This proves that the second term of (B.2) is O(cn), since it can

be shown that for h small enough f̄X(·) is bounded away from 0 and infinity uniformly on X . 2
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