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Abstract

We consider problems of the form min{cx + hy : Ax + By ≥ b, x ∈ Zn
+, y ∈ Y ⊆ Rp

+} 
that are often treated using Benders’ algorithm, but in which some of the y-variables are 
required to be integer. We present two algorithms that hopefully add to and clarify some 
of the algorithms proposed since the year 2000. Both are branch-and-cut algorithms solving 
linear programs by maintaining a strict separation between a Master problem in (x, η)-
variables and a subproblem in the y-variables. The first involves nothing but the solution 
of linear programs, but involves branching in (x, y)-space. It is demonstrated on a small 
capacitated facility location problem with single-sourcing. The second restricted to prob-
lems with x ∈ {0, 1}n only requires branching in the x-space, but uses cutting planes in the 
subproblem based on the integrality of the y-variables that are converted/lifted into valid 
inequalities for the original problem in (x, y)-variables. For the latter algorithm we show how 
the lifting can be carried out trivially for several classes of cutting planes. A 0-1 knapsack 
problem is provided as an example. To terminate we consider how the information gener-
ated in the course of the algorithms can be used to carry out certain post-optimality analysis.
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1. Introduction

In the last 20 years there has been a significant regain of interest in Benders’ algorithm [6]
designed to treat problems of the form min{cx + hy : Ax + By ≥ b, x ∈ Zn

+, y ∈ Rp
+} and

also in tackling the more complicated problem in which some or all of the y-variables are also
integer. The basic idea is to break up the problem into a mixed-integer “Master Problem" in
the (x, η)-variables in which η provides an underestimate of the corresponding optimal cost of a
linear programming “Subproblem" in the y-variables with x fixed, which feeds back information
to the Master Problem so as to improve the estimate provided by η.

We now indicate some of the new ideas that have been proposed.
i) Since branch-and-cut algorithms have become standard, it is natural to solve the problem
using branch-and-cut viewing the Benders’ subproblem as a separation or cut-generation prob-
lem generating cuts to be added to the Master problem in the (x, η)-space. Therefore instead
of resolving the IP Master problem repeatedly as suggested by Benders, one now runs a single
pass branch-and-cut algorithm,
ii) Given that the dual of the LP subproblem typically has multiple optimal solutions or un-
bounded rays, several ideas have been proposed so as to select solutions leading to “strong"
cuts. These include pareto-optimal cuts (Magnanti and Wong [27], Papadakos [31]), the use of
different normalizations to bound the feasible region of the dual (Fischetti et al. [15]), the in-out
approach (Ben-Ameur and Neto [5], Fischetti et al. [14]), a partial re-optimization approach
(Wentges [39]) and a facet-generating approach (Conforti and Wolsey [8]).
iii) Until the cuts generated provide a reasonable approximation to the real cost of the con-
tinuous y-variables, the solutions of the Master Problem may be of little interest. Thus it is
necessary to generate a good set of initial inequalities and then solve the linear programming
relaxation of the Master before starting to branch on the x-variables that are fractional. Also
generating multiple cuts at each iteration has been recommended.

When some y-variables are integer, additional difficulties arise.
iv) First of all, the subproblem is now an integer or mixed-integer program. So the standard
Benders’ y-variable subproblem here is no longer sufficient to provide dual information char-
acterizing the optimal value of the integer subproblem. Various solutions have been proposed,
many of them motivated by two-level stochastic programs with integer recourse. These include
no-good optimality and feasibility cuts (Laporte and Louveaux [25]), solution of the subprob-
lem using Gomory fractional cuts (Gade et at. [16]), lift-and-project cuts (Sen and Higle [34])
or RLT extended formulations (Sherali and Fratelli [37]), the use of IP dual functions (Caroe
and Tind [7]) and value functions (Hassanzadeh and Ralphs [23]) and branch-and-cut (Sen and
Sherali [35]) among others. Another approach is to incorporate some of the y-variables in the
Master problem, see [35], as well as Crainic et al. [11] in which some of the scenario subproblems
are included in the Master problem. For the special case of two-level stochastic programs with
integer recourse, numerous authors have approached the question of how to accelerate the re-
peated solution of the large number of related second stage recourse problems containing integer
variables.
v) State-of-the-art commercial solvers such as CPLEX [24] and non-commerical solvers such
as SCIP [18], see Achterberg [1] and Maher [28], provide interfaces for Benders’ decomposition
which save programming time for those familiar with the algorithm.
vi) Numerous successful applications have been reported including multicommodity distribution
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design (Geoffrion and Graves [17]), simultaneous aircraft routing and crew scheduling (Cordeau
et al. [9]), fixed-charge network design problems (Costa [10]) and very recently capacitated
facility location and covering problems (Fischetti et al. [13, 12]). In particular Rahmaniani et
al. [32] provides an extensive literature review of Benders’ decomposition, including references
to many more applications.

Here we consider the problem in which some or all of the y-variables are integer. Our first
suggestion is to take the following viewpoint:

Given a linear program min{cx + hy : Ax + By ≥ b, x ∈ Rn
+, y ∈ Rp

+}, Benders’ algorithm
is a method to solve such a linear program in which one iterates between solving an LP in the
(x, η)-space and an LP in the y-space.

This viewpoint leads naturally to two branch-and-cut algorithms that we develop here. In
the first algorithm, denoted BCxy (Branch-and-Cut in (x, y)-space), one can branch on both x

and y-variables. At each node of the branch-and-cut tree, one uses Benders’ approach to solve
the linear program:

min cx + hy

Ax + By ≥ b

Cx ≥ e

ℓ ≤ y ≤ k

x ∈ Rn
+, y ∈ Rp

+ .

Here the constraints Cx ≥ e contain original constraints just involving x-variables and the
bounds from branching on x-variables and k ∈ Zp

+ and ℓ ∈ Zp
+ are upper and lower bounds on

the y-variables combining possibly original bounds and bounds from branching. Advantages are
i) throughout the algorithm only linear programming relaxations of the Master and Separation
problems are solved,
ii) the cuts generated are based on problem structure as opposed to no-good cuts that just cut
off the (x, η)-point just examined and
iii) the simplicity of a single pass branch-and-cut algorithm.
The disadvantage is that the enumeration involves both x and y-variables. We note that in [35]
the same subproblem is solved to generate cuts, but then y-variables are introduced in the
Master Problem and the subproblems solved are MIPs.

The second algorithm, denoted BxCy (Branching in x-space and Cutting in y-space), avoids
the need to branch in the (x, y)-space. However the price to pay is that the subproblems must
now be solved at least partially as (mixed)-integer programs. This leads to an algorithm in which
the original formulation in the (x, y)-space and the subproblem in the y-space are updated by
the addition of valid inequalities which are then used to generate new Benders’ feasibility and
optimality cuts. We show how a variety of cutting planes for the mixed-integer subproblems
can be extended/lifted to provide these valid inequalities in the (x, y)-space. This generalizes
the approach taken in [16] using Gomory fractional cutting planes.

In the next Section, we describe the algorithm BCxy and present a small instance of the ca-
pacitated facility problem with single-sourcing to demonstrate the algorithm. In Section 3 we de-
scribe the Algorithm BxCy for problems with x ∈ {0, 1}n and then indicate how Gomory mixed-
integer cuts, 0-1 cover inequalities, Lift-and-Project cuts and flow cover inequalities provide ex-
amples of the cuts that can be used in the algorithm. In Section 4 we consider briefly the question
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of sensitivity analysis and re-optimization for small data changes after using the BCxy algorithm.
Specifically the information provided by solving an instance with the BCxy algorithm is used to
generate an underestimate of the value function ϕ(d, k, ℓ) = min{hy : By ≥ d, ℓ ≤ y ≤ k, y ∈ Zp}.
It is also shown how this information can be used to hot-start re-optimization when the data
(c, b, A) changes. Finally in Section 5 we discuss a few of the many questions that remain.

2. Algorithm BCxy: Branching in xy-space

For simplicity we assume that all the x and y-variables are integer variables. The problem
to be solved is

min{cx+ hy : Ax+By ≥ b, x ∈ Zn
+, y ∈ Zp

+}.

At a given node q of the branch-and-cut tree, the associated original problem (OP) is

min cx + hy

Ax + By ≥ b

Cqx ≥ eq

ℓq ≤ y ≤ kq

x ∈ Zn
+, y ∈ Zp.

To solve the linear programming relaxation of OP, one solves a relaxation of the Benders’ Master
linear program (BM)

ζ = min cx+ η

us0(b−Ax) + us1ℓ
q − us2k

q ≤ η s = 1, . . . , S

vt0(b−Ax) + vt1ℓ
q − vt2k

q ≤ 0 t = 1, . . . , T

Cqx ≥ eq

x ∈ Rn
+, η ∈ R1,

where (us0, u
s
1, u

s
2) are some extreme points of

Ω = {(u0, u1, u2) ∈ Rm
+ × Rp

+ × Rp
+ : u0B + u1Ip − u2Ip = h}

and (vt0, v
t
1, v

t
2) are some extreme rays of Ω. (x∗, η∗) denotes its optimal solution. The associated

separation subproblem (SP) with x∗ fixed is the linear program

ϕ(x∗) = min{hy : By ≥ b−Ax∗, y ≥ ℓq,−y ≥ −kq, y ∈ Rp}.

The resulting dual linear program (DSP) is

max{u0(b−Ax∗) + u1ℓ
q − u2k

q : (u0, u1, u2) ∈ Ω}.

2.1 Outline of the BCxy Algorithm

We now discuss the different possibilities.

If DSP is unbounded, then SP is infeasible. Let (v∗0, v∗1, v∗2) be the associated unbounded extreme
ray with v∗0(b−Ax∗) + v∗1ℓ

q − v∗2k
q > 0.

i) If v∗0A ̸= 0, a feasibility cut v∗0(b−Ax) + v∗1ℓ
q − v∗2k

q ≤ 0 cutting off x∗ is added to BM.
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ii) If v∗0A = 0, the feasible set of SP is empty whatever the choice of x. So the node can be
pruned.
If DSP has a finite optimal value ϕ(x∗), let y∗ be the optimal primal solution and (u∗0, u

∗
1, u

∗
2)

the optimal dual solution.
i) If ϕ(x∗) > η∗, the optimality cut u∗0(b−Ax) + u∗1ℓ

q − u∗2k
q ≤ η cutting off (x∗, η∗) is added to

BM.
ii) If ϕ(x∗) = η∗, OP is solved with optimal value ζ∗ = cx∗ + η∗. There are now three cases.

a) If (x∗, y∗) ∈ Zn
+×Zp, a new feasible solution has been found. The incumbent is updated.

The node is pruned by optimality.
b) If x∗ /∈ Zn, one branches on a variable with x∗j /∈ Z1. Two new nodes are created

with the new constraint sets Cqx ≥ eq, xj ≤ ⌊x∗j⌋ and Cqx ≥ eq, xj ≥ ⌈x∗j⌉ respectively in the
branch-and-cut tree for the Benders’ Master.

c) If x∗ ∈ Zn but y∗ /∈ Zp
+, one branches on a variable with y∗j /∈ Z1. Two new nodes are

created with updated constraint sets, one in which yj ≥ ℓqj is replaced by yj ≥ ⌈y∗j ⌉ and the
other in which yj ≤ kqj is replaced by yj ≤ ⌊y∗j ⌋.

Note that the set Ω never changes so only the objective function in DSP changes from
one iteration to the next. It also follows that once an extreme point or extreme ray has been
generated, it can be used in BM in any node of the branch-and-cut tree. By treating varying
bounds in the subproblem, the set Ω obtains larger sets of extreme points and extreme rays
than the set Ω′ = {u0 ∈ Rm

+ : u0B ≤ h}. These provide additional cuts based on the problem
structure for the x-space BM. Observe also that it is easy to incorporate many of the ideas for
speeding up Benders’ algorithm such as including valid inequalities for {x ∈ Zn

+ : Cx ≥ d} in
BM, and the selection of better dual solutions in the subproblems.

An Example: Capacitated Facility Location with Single-Sourcing

To demonstrate algorithm BCxy we consider a capacitated facility location problem (CFL)
in which some clients require single-sourcing. The problem is as follows: There are n facilities
and m clients. Facility j has a capacity Kj and client i has a demand ai. There is a fixed cost cj
of using facility j and a per unit transportation cost gij between client i and facility j. The goal
is to minimize the total cost while satisfying the demands subject to the capacity constraints
and single sourcing for the clients in S ⊆ {1, . . . ,m}.

Letting xj = 1 if facility j is opened and 0 otherwise and yij denote the fraction of the
demand of client i satisfied from facility j, one obtains the formulation

min
n∑

j=1

cjxj +
m∑
i=1

n∑
j=1

hijyij

m∑
i=1

aiyij ≤ Kjxj j = 1, . . . , n

n∑
j=1

yij = 1 i = 1, . . . ,m

yij ≤ xj i = 1, . . . ,m, j = 1, . . . , n
n∑

j=1

Kjxj ≥
∑m

i=1 ai

x ∈ {0, 1}n, y ∈ Rmn
+ , yij ∈ {0, 1} for i ∈ S
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where hij = aigij is the cost of shipping ai units from facility j to client i.

Example 1 We present part of a possible branch-and-cut tree for the following instance:

ssy = [0,0,0,0,0,1,1,1,1,1]
c = [50,64,37,49,65]
a = [10,4,12,32,16,22,11,31,32,25]
K = [60,80,80,70,60]
g = [2,1,5,3,3,2,2,2,3,4,5,2,3,4,3,4,3,3,2,2,3,2,4,2,3,3,5,5,3,4,3,1,4,3,2,4,3,5,3,2,3,3,4,4,3,5,2,2,4,4]

Start with the initial Master LP (BM):

ζ = min cx+ η
n∑

j=1

Kjxj ≥
m∑
i=1

ai

n∑
j=1

xj ≥ 3

x ∈ [0, 1]n, η ∈ R1

where the inequality
∑n

j=1 xj ≥ 3 is clearly valid as
∑m

i=1 ai = 195 and maxj∈[1,n]Kj = 80.

The initial separation problem (SP) takes the form:

min

m∑
i=1

n∑
j=1

aigijyij

m∑
j=1

yij = 1 i = 1, . . . ,m

−
m∑
i=1

aiyij ≥ −Kjx
∗
j j = 1, . . . , n

yij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

−yij ≥ −x∗j i = 1, . . . ,m, j = 1, . . . , n

y ∈ Rmn.

Thus initially the bounds are ℓij = 0 and kij = x∗j for all i, j.

The steps of the algorithm are shown in Table 1 below including the value of the BM at each
node, the corresponding x solution, as well as the number of cuts needed to solve the BM. In
Figure 1 the complete branch-and-cut tree is shown. The algorithm terminates after 9 nodes
with an optimal solution x = (1, 1, 0, 0, 1), y12 = 1, y21 = 0.25, y22 = 0.75, y32 = 1, y42 = 0.094,
y45 = 0.906, y52 = 1, y61 = 1, y72 = 1, y85 = 1, y91 = 1, y10,2 = 1 of total cost 605.

A list of the extreme points us0 and extreme rays vt0 of Ω generated at each node is given in the
appendix. The values of (us1, us2) and (vt1, v

t
2) follow from the equations defining Ω.

3. Algorithm BxCy: Branching in x-space, Cutting in y-space

Here we present a branch-and-cut algorithm based on Benders’ solution of the linear programs
in which the branching in the Master problem only involves the x-variables. We require that
x ∈ {0, 1}n and we assume for simplicity of presentation that all the y-variables are integer.
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node q ζq x∗ Comments
1 136 (1,0,1,1,0) Initial solution of BM.

9 optimality cuts added.
601 (0,1,0,1,1) y92 = 0.09375, y95 = 0.90625, else yij ∈ {0, 1}

Branch on y95
2 Branch y95 = 0. Add y95 = 0 in SP. 3 optimality cuts added

601.7 (0.7,1,0,0.3,1) Branch on x1
3 Branch: y95 = 0, x1 = 1. Add x1 = 1 in BM

3 optimality cuts added.
605 (1,1,0,0,1) OP feasible. Update incumbent z̄ = 605

Prune and Backtrack.
4 Branch y95 = 0, x1 = 0. Set x1 = 0 in BM.

Keep all 15 cuts for y95 = 0 in BM.
602.4 (0,1,0.48,1,0.52) Branch on x5.

5 Branch y95 = 0, x1 = 0, x5 = 1. No cuts added.
605∗ (0,1,0.4,0.6,1) Prune by bound. Backtrack

6 Branch y95 = 0, x1 = 0, x5 = 0. No cuts added.
620∗ (0,1,1,1,0) Prune by bound. Backtrack.

7 Branch y95 = 1. Set y95 = 1 in SP.
2 Optimality cuts added

604 (0,1,0,1,1) y85 = 0.903, y82 = 0.097, else yij ∈ {0, 1}
Branch on y85

8 y95 = 1, y85 = 1 Set y95 = y85 = 1 in SP.
1 feasibility cut added

+∞ BM infeasible. Prune and backtrack.
9 y95 = 1, y85 = 0 Set y95 = 1, y85 = 0 in SP

1 optimality cut added
614.8∗ (0.0.36,0.64,1,1) Prune by bound.

Search completed.

Table 1: CFL with Single-Sourcing. ∗ indicates lower bound on ζq.

The main observation is:

For many of the cutting planes used in solving MIPs, there is a “simple" lifting, so that a valid
inequality in the y-space for the set {y ∈ Zp

+ : By ≥ b − Ax} can be extended to give a valid
inequality in the (x, y)-space for the set {(x, y) ∈ {0, 1}n × Zp

+ : Ax+By ≥ d}.

Here there are two types of cuts, standard Benders’ type cuts in the (x, η)-variables that are
added to the Benders’ Master problem and cuts in (x, y)-space generated in the subproblems
based on integrality of the y-variables. The latter are added to the original problem formulation
and also to the y-space subproblem.

Thus we work with the original problem to which a set of valid inequalities Πx + Θy ≥ Π0

have been added, denoted (OP):
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1
ζ = 601

2
ζ = 601.7

7
ζ = 604

9
ζ = 614.8∗

8
ζ = ∞4

ζ = 602.4
3

ζ = 605

z̄ = 605

5
ζ = 605∗

6
ζ = 620∗

y95 = 1

y95 = 0

x1 = 1
x1 = 0

x5 = 1
x5 = 0

y95 = 0

y85 = 1
y85 = 0

Figure 1: Branch-and-cut tree for Benders’ algorithm

z = min cx+ hy

Ax+By ≥ b

Πx+Θy ≥ Π0

Cx ≥ e

x ∈ {0, 1}n, y ∈ Zp
+.

This leads us to the Benders’ subproblem SPI(x∗)

ϕI(x∗) = min hy

By ≥ b−Ax∗

Θy ≥ Π0 −Πx∗

y ∈ Zp
+

with its linear programming relaxation SP(x∗) of value ϕ(x∗).
Finally we work with the linear programming relaxation (BM) of the Benders’ Master Prob-

lem
ζLP = min cx+ η

us(b−Ax) + ũs(d−Πx) ≤ η s = 1, . . . , S

vt(b−Ax) + ṽt(d−Πx) ≤ 0 t = 1, . . . , T

Cx ≥ e

x ∈ [0, 1]n, η ∈ R1,

where {(us, ũs)}Ss=1 and {(vt, ṽt)}Tt=1 are subsets of the extreme points and extreme rays of the
dual region Ω = {(u, ũ) : uB + ũΘ ≤ h, (u, ũ) ≥ 0}.

3.1 Outline of the BxCy Algorithm

We describe a branch-and-cut algorithm in the x-space. The integrality of the y-variables is
only considered for points x∗ ∈ {0, 1}n. At a given node, we define an iteration of the Benders’
Master (BM) problem.
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Solve the linear program BM. Solution (x∗, η∗). ζLP = cx∗ + η∗.
Solve SP(x∗) with optimal solution y∗, dual solution (u∗, ũ∗), ϕ(x∗) = hy∗ = u∗(b − Ax∗) +

ũ∗(Π0 −Πx∗). There are six cases.

1. x∗ /∈ Zn
+. η∗ = ϕ(x∗).

The linear programming relaxation of OP is solved. Branch on a variable xj with x∗j /∈ Z1
+.

Create two new nodes.

2. x∗ /∈ Zn
+. η∗ < ϕ(x∗).

Add a standard Benders’ infeasibility cut v∗(b−Ax) + ṽ∗(Π0 −Πx) ≤ 0 or optimality cut
u∗(b−Ax) + ũ∗(Π0 −Πx) ≤ η to BM and return to BM.

3. x∗ ∈ Zn
+. y∗ ∈ Zp

+. η∗ < ϕ(x∗) = ϕI(x∗).
Feasible solution found. If best so far, update of the incumbent. Add an optimality cut
u∗(b−Ax) + ũ∗(Π0 −Πx) ≤ η to BM and return to BM.

4. x∗ ∈ Zn
+. y∗ ∈ Zp

+. η∗ = ϕ(x∗) = ϕI(x∗).
Prune the node of BM by optimality.

5. x∗ ∈ Zn
+. y∗ /∈ Zp

+. η∗ = ϕ(x∗) ≤ ϕI(x∗).
Generate an (x, y)-space cut θy ≥ π0 − πx cutting off the point (x∗, y∗).
Add the cut to OP and SP(x∗). Return to SP(x∗).

6. x∗ ∈ Zn
+. y∗ /∈ Zp

+. η∗ < ϕ(x∗)

Here there are two options:
Option 1. Add an infeasibility or optimality cut to BM as in case 2. Return to BM.
Option 2. Generate an (x, y)-space cut as in case 5. Return to SP(x∗).

Here we consider how to generate an (x, y)-space cut from the subproblem SPI(x∗) in cases
5 and 6.
Let x̄j = 1 − xj for j = {1, . . . , n}, N0 = {j : x∗j = 0}, N1 = {j : x∗j = 1}, b̃ = b −

∑
j∈N1

aj
and Π̃0 = Π0 −

∑
j∈N1

Πj . Note that −
∑

j∈N0
ajxj +

∑
j∈N1

aj x̄j = 0 and −
∑

j∈N0
Πjxj +∑

j∈N1
Πj x̄j = 0.

SP(x∗) can now be rewritten as:

ϕ(x∗) = minhy

By ≥ b̃−
∑
j∈N0

ajxj +
∑
j∈N1

aj x̄j

Θy ≥ Π̃0 −
∑
j∈N0

Π̃jxj +
∑
j∈N1

Π̃j x̄j

x = x∗

y ∈ Rp
+.

Generate a valid inequality θy ≥ π0 for SPI(x∗) cutting off y∗ and extend it to a valid inequality
θy ≥ π̃0 −

∑
j∈N0

πjxj +
∑

j∈N1
πj x̄j for OP cutting off (x∗, y∗).

If no suitable cuts can be found for SPI(x∗) and no suitable optimality cut can be returned,
solve SPI(x∗) to optimality by some algorithm , and return a no-good feasibility

∑
j∈N0

xj +

9



∑
j∈N1

(1−xj) ≥ 1 or no-good optimality cut η ≥ ϕI(x∗)−(ϕI(x∗)−L)(
∑

j∈N0
xj+

∑
j∈N1

(1−xj))
to BM where L is a lower bound on min{ϕI(x) : x ∈ {0, 1}n}.

Below we indicate some of the various pure integer and mixed integer inequalities that can
be used to generate (x, y)-space cuts in Algorithm BxCy. For ease of description, we suppose
that the cut is the first cut generated for SPI(x∗).

3.2 Cuts for All-Integer Subproblems

Gomory Fractional Cuts (Gomory [19])
Solving the linear programming relaxation of SPI(x∗), with LP solution y∗ /∈ Zp, rows of the
optimal LP tableau take the form:

p∑
j=1

b̄ijyj +
m∑
i=1

σ̄isi = b̄i −
∑
j∈N0

āijxj +
∑
j∈N1

āij x̄j , x = x∗

where s = Ax+ By − b ≥ 0 are the slack variables. If the basic variable in the row takes value
b̄i /∈ Z1, generate a fractional Gomory cut

p∑
j=1

⌊b̄ij⌋yj +
m∑
i=1

⌊σ̄i⌋si ≤ ⌊b̄i⌋ −
∑
j∈N0

⌊āij⌋xj −
∑
j∈N1

⌊−āij⌋x̄j

cutting off y∗ when x = x∗.

0-1 Extended Cover Inequalities (Balas [3], Hammer et al. [22], Wolsey [40])
Suppose that some row of SPI(x∗) is a 0-1 knapsack constraint of the form:∑

j∈P
bjyj ≤ d−

∑
j∈N0

ajxj +
∑
j∈N1

aj x̄j , x = x∗, y ∈ {0, 1}n

and that the extended minimal cover inequality with cover C ⊂ P is violated by y∗, namely the
inequality ∑

j∈E(C)

yj ≤ |C| − 1

where E(C) = C ∪ {i /∈ C : bi ≥ maxj∈C bj}. Thus
∑

j∈C bj = d + λ with λ > 0 and λ < bj
for j ∈ C. Let b̄ = maxj∈C bj . Adding yj ≤ 1 with weight b̄ − bj for j ∈ C to the knapsack
constraint and dividing by b̄ gives∑

j∈C
yj +

∑
j∈P\C

bj

b̄
yj ≤ |C| − λ

b̄
−

∑
j∈N0

aj

b̄
xj +

∑
j∈N1

aj

b̄
x̄j .

Now taking a fractional Gomory cut gives the inequality

∑
j∈C

yj +
∑

j∈P\C

⌊bj
b̄
⌋yj ≤ |C| − 1−

∑
j∈N0

⌊aj
b̄
⌋xj −

∑
j∈N1

⌊−aj
b̄

⌋x̄j

that is at least as strong as the extended cover inequality and cuts off y∗ when x = x∗.
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Example 2 We demonstrate Algorithm BxCy on a small 0-1 knapsack problem:

max 1x1 + 4x2 + 6x3 + 8y1 + 9y2 + 11y3 + 13y4

1x1 + 2x2 + 3x3 + 6y1 + 7y2 + 8y3 + 11y4 ≤ 16

x ∈ {0, 1}3, y ∈ {0, 1}4.

We initialize BM with an upper bound η ≤
∑4

j=1 hj = 41.
Node 1. Iteration 1.
BM: ζLP = 52, x∗ = (1, 1, 1), η∗ = 41.
SP(x∗): Solving the LP relaxation gives ϕ(x∗) = 132

3 < η∗. The dual variables are 4
3 on the

knapsack constraint is and 1
3 on the bound constraint y3 ≤ 1.

Case 2. The optimality cut

η ≤ 4

3
(16− x1 − 2x2 − 3x3) +

1

3

is added to BM.
Node 1. Iteration 2.
BM: ζLP = 25, x∗ = (0, 1, 1), η∗ = 15.
SP: ϕ(x∗) = 15. y∗ = (0.5, 0, 1, 0).
BM is solved, x∗ = (0, 1, 1), but y∗ /∈ {0, 1}4.
Case 5. The subproblem SPI(x∗) now takes the form:

ϕI(x∗) = max 8y1 + 9y2 + 11y3 + 13y4

6y1 + 7y2 + 8y3 + 11y4 ≤ 11− x1 + 2x̄2 + 3x̄3

x = x∗, y ∈ {0, 1}4.

Adding a Gomory Fractional Cut
Consider the optimal LP tableau of SP(x∗) after adding s as a slack variable. Let ȳ3 = 1− y3.
The row in which y1 is basic is:

y1 +
7

6
y2 −

8

6
y3 +

11

6
y4 +

1

6
s =

3

6
− 1

6
x1 +

2

6
x̄2 +

3

6
x̄3.

The Gomory fractional cut on this row is

y1 + y2 − 2ȳ3 + y4 + 0s ≤ 0 + x̄2 + x̄3.

Add the Gomory fractional cut

y1 + y2 + 2y3 + y4 + x2 + x3 ≤ 4. (c1)

to OM and SP(x∗).
Solving SP with (c1) gives ϕ(x∗) = 142

3 , y∗ = (1, 13 ,
1
3 , 0) /∈ Z4

+.
Case 6. Choose Option 2 to generate an (x, y)-cut.
Adding a Cover Inequality
Now the extended knapsack cover inequality with minimal cover C = {1, 2} is violated. With
λ = 2 and ā = 7, this leads to the inequality

y1 + y2 +
8

7
y3 +

11

7
y4 ≤ |C| − 2

7
− 1

7
x1 +

2

7
x̄2 +

3

7
x̄3.

11



The extended cover inequality

y1 + y2 + y3 + y4 + x2 + x3 ≤ 3 (c2)

is added to OP and SP(x∗). Solving SP with (c1) and (c2) gives ϕ(x∗) = 13, y∗ = (0, 0, 0, 1).
As y∗ ∈ {0, 1}4, x∗ = (0, 1, 1), y∗ = (0, 0, 0, 1) is a new incumbent solution of value ζ = 23.
The dual variable on the cover cut is 13. All other dual variables are 0.
Case 3. The optimality cut

η ≤ 13(3− x2 − x3)

is now added to BM.
Node 1. Iteration 3
BM: ζLP = 24.741935, x∗ = (0, 0.806452, 1) η∗ = 15.5161,
SP(x∗) with (c1) and (c2): ϕ′(x∗) = 14.354836 < η∗ with dual variables 2

3 on the knapsack
constraint and 17

3 on the cover inequality (c2).
Case 2. The optimality cut

η ≤ 2

3
(16− x1 − 2x2 − 3x3) +

17

3
(3− x2 − x3)

is added to BM.
Node 1. Iteration 4
BM: ζ∗ = 24.384615, x∗ = (0, 0.538462, 1), η∗ = 16.2308

SP(x∗): ϕ(x∗) = 15.8461524 with dual variables 1 on the knapsack constraint, 2 on the cover
inequality (c2) and 1 on the bound y3 ≤ 1.

Case 2. The optimality cut

η ≤ (16− x1 − 2x2 − 3x3) + 2(3− x2 − x3) + 1

is added to BM.
Node 1. Iteration 5
BM: ζLP = 24, x∗ = (0, 23 , 1), η

∗ = 151
3

SP(x∗): ϕ(x∗) = 151
3 .

The linear programming relaxation of BM is solved. x∗ /∈ {0, 1}3.
Case 1. Need to branch on x2.
Node 2. Branch x2 = 0. Add constraint x2 = 0 to BM.
ζLP = 232

3 . Prune by bound as objective function is integer valued.
Node 3. Branch x2 = 1. Add constraint x2 = 1 to BM.
ζLP = 233

4 . Prune by bound as objective function is integer valued.

All nodes are pruned. So the incumbent x∗ = (0, 1, 1), y∗ = (0, 0, 0, 1) of value 23 is optimal.

3.3 Cuts for Mixed-Integer Subproblems

Here we indicate some valid inequalities that can be used for mixed-integer subproblems.
Gomory Mixed Integer Cuts (Gomory [20])
As for the Gomory fractional cut above, Gomory mixed integer cuts can be generated off a row
of the optimal LP tableau and the x-variable coefficients are obtained automatically.
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Mixed Integer Rounding Inequalities (Nemhauser and Wolsey [29])
Suppose that the subproblem SPI(x∗) involves both continuous PC and integer P I variables
with either an original constraint or tableau constraint:∑

j∈P
bjyj ≤ b−

∑
j∈N0

ajxj +
∑
j∈N1

aj x̄j .

Using the function Fα : R1 → R1 satisfying Fα(d) = ⌊d⌋ + (fd−α)+

(1−α) , Fα(d) = min(0, d
1−α), the

MIR inequality is:∑
j∈P I

Fα(bj)yj +
∑
j∈PC

Fα(bj)yj ≤ Fα(b)−
∑
j∈N0

Fα(aj)xj −
∑
j∈N1

Fα(−aj)x̄j

where α = b − ⌊b⌋ the fractional part of b and (fd − α)+ = max(fd − α, 0). It is well known
that this corresponds to the Gomory mixed integer cut when when applied to a row of the LP
tableau.

Lift-and-Project Cuts (Balas et al. [4])
Suppose that SP(x∗) has constraints: By ≥ b̃−

∑
j∈N0

ajxj +
∑

j∈N1
aj x̄j with solution y∗ /∈ Zp.

Select yj for which y∗j /∈ Z1. Solve the lift-and-project LP

min γy∗ − γ0
γ − uB + ũej ≥ 0

γ − vB − ṽej ≥ 0

γ0 − ub̃+ ũ⌊y∗j ⌋ ≤ 0

γ0 − vb̃− ṽ(⌊y∗j ⌋+ 1) ≤ 0∑m
i=1 ui + ũ+

∑m
i=1 vi + ṽ = 1

u, v ∈ Rm
+ , ũ, ṽ ∈ R1

+,

where ej denotes the j-th unit vector. Let (γ∗, γ∗0 , u
∗, ũ∗, v∗, ũ∗) be an optimal solution. The

part (u∗, ũ∗) is associated with the disjunction −yj ≥ −⌊y∗j ⌋ and (v∗, ṽ∗) is associated with the
disjunction yj ≥ ⌊y∗j ⌋+ 1. This gives the inequality

γ∗y ≥ γ∗0 + u∗(−
∑
j∈N0

ajx+
∑
j∈N1

aj x̄j)

for yj ≤ ⌊y∗j ⌋ and
γ∗y ≥ γ∗0 + v∗(−

∑
j∈N0

ajx+
∑
j∈N1

aj x̄j)

for yj ≥ ⌊y∗j ⌋+1 and thus the resulting globally valid inequality that cuts off y∗ when x = x∗ is

γ∗y ≥ γ∗0 +
∑
j∈N0

min[−u∗aj ,−v∗aj ]xj +
∑
j∈N1

min[u∗aj , v
∗aj ]x̄j .

Flow-cover Inequalities (Padberg et al. [30])
Suppose that the subproblem SPI(x∗) contains constraints of the form∑

j∈P+

yj −
∑
j∈P−

yj ≤ b−
∑
j∈N0

ajxj +
∑
j∈N1

aj x̄j (1)

yj ≤ mjzj j ∈ P

x = x∗

y ∈ Rp
+, z ∈ {0, 1}p.

13



Different flow cover inequalities have been proposed for such sets. We present one such inequality
from Van Roy and Wolsey [38]. The lifting follows from the validity of the inequality. To describe
the inequality, let C+ ⊆ P+, C− ⊆ P−, λ =

∑
j∈C+

mj −
∑

j∈C−
mj − b > 0, L ⊆ P− \C−. Then

the flow cover inequality∑
j∈C+

yj +
∑
j∈C+

(mj − λ)+(1− zj) ≤ b+
∑
j∈C−

mj + λ
∑
j∈L

zj +
∑

j∈P−\(C−∪L)

yj

is a valid inequality for SPI(x∗).
Rewriting (1) so that all the xj , x̄j terms have a positive coefficient, we obtain.∑

j∈P+

yj −
∑
j∈P−

yj +
∑

j∈N0:aj>0

ajxj +
∑

j∈N1:aj<0

(−aj)x̄j ≤ b+
∑

j∈N0:aj<0

(−aj)xj +
∑

j∈N1:aj>0

aj x̄j

To extend it to a valid inequality including the x-variables, we observe that for yj for j ∈ P+\C+,
the coefficient in the inequality is 0. On the other hand for j ∈ P− \ C−, the term obtained is
either yj or λzj . Taking yj = |aj |xj or yj = |aj |x̄j , the resulting inequality is

∑
j∈C+

yj +
∑
j∈C+

(mj − λ)+(1− zj) ≤ b+
∑
j∈C−

mj + λ
∑
j∈L

zj +
∑

j∈P−\(C−∪L)

yj

+
∑

j∈N0:aj<0

min[λ, (−aj)]xj +
∑

j∈N1:aj>0

min[aj , λ]x̄j

Example 3 Consider the instance

ζ = maxx1 + x2 + 2y1 + 10y2 + 2y3 − 4y4 − 5z1 − 2z2 − 2z3 − z4

11x1 + 3x2 + y1 + y2 − y3 − y4 = 15

y1 ≤ z1, y2 ≤ 2z2, y3 ≤ 5z3, y4 ≤ 4z4

x ∈ {0, 1}2, y ∈ R4
+, z ∈ {0, 1}4

in which we separate the x and (y, z) variables and apply Algorithm BxCy. Here the subproblem
is mixed-integer.
Node 1 The initial relaxed Master problem BM is:

ζLP = maxx1 + x2 + η

x ∈ [0, 1]2, η ≤ 30

with optimal solution x∗ = (1, 1), η∗ = 30.
Now the linear programming relaxation of SPI(x∗) is the problem

ϕ(x∗) = max 2y1 + 10y2 + 2y3 − 4y4 − 5z1 − 2z2 − 2z3 − z4

y1 + y2 − y3 − y4 = 1 + 11x̄∗1 + 3x̄∗2 (2)
y1 ≤ z1, y2 ≤ 2z2, y3 ≤ 5z3, y4 ≤ 4z4 (3)

y ∈ R4
+, z ∈ [0, 1]4

with solution ϕ′(x∗) = 19.6, y∗ = (0, 2, 1, 0), z = (0, 1, 0.2, 0) /∈ {0, 1}4.
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Case 6. Choose the option of generating an (x, y)-inequality.
The flow cover inequality with C+ = {2}, C− = ∅, λ = 1, L = {3} giving

y2 + 1(1− z2) ≤ 1 + 1z3 + y4 + 1x̄1 + 1x̄2 (4)

is violated by 0.8. The inequality is added to OM and SP(x∗).
Solving SP(x∗) gives ϕ(x∗) = 18, y = (0, 2, 1, 0), z = (0, 1, 1, 0). This is a feasible solution giving
an incumbent value of ζ = 20. The dual solution is: -2 on constraint (2), (5,5.75,0,0.25) on the
constraints (3), (0,15.75,4.25,0) on the zj ≤ 1 constraints and 6.25 on the flow cover inequality
(4).
Case 3. The optimality cut

η ≤ 2.5 + 15.75x1 − 0.25x2

is added to BM.
The new optimal solution of BM is: ζLP = 20, x∗ = (1, 1), η∗ = 18.
As lower bound ζ and upper bound ζLP are equal, the incumbent solution is optimal.

Other stronger variants of flow cover inequalities can be found in Gu et al. [21] and Louveaux
and Wolsey [26]. These can be lifted by inspection in the same way as above. Atamtürk [2]
also develops inequalities for mixed integer knapsack sets. Other cuts that can be used include
lift-and-project cuts, see Balas et al. [4], Sen and Higle [34], or other cuts obtained from the
projection of an extended formulation, such as RLT [36].

The choice made above to restrict Algorithm BxCy to instances with x ∈ {0, 1}n follows
from the fact that it is always possible to lift a valid inequality θy ≥ π0 into a valid inequality
θy ≤ π̃0 − πx. For obvious reasons of ease of computation we have chosen to use inequalities for
which the lifting is essentially by inspection. With other inequalities, this lifting may involve
solving MIP problems to obtain the coefficients of the x-variables. On the other hand lifting
of an inequality may no longer be possible when x are more general integer variables. For
instance, if x ∈ [0, k]n and x∗j is an integer strictly between the bounds, Wolsey [41] shows how
to calculate the potential lifting coefficients. However even with n = p = 1, it is easy to produce
an inequality in the y1-space that has no valid lifting coefficient for x1.

4. The estimated value function and sensitivity analysis

Here we show how the branch-and-cut tree from algorithm BCxy, represented by a rooted
digraph D = (N,A), can be used both to estimate the value function ϕ(d, k, ℓ) = min{hy : By ≥
d, ℓ ≤ y ≤ k, y ∈ Zp} with ℓ, k ∈ Zp

+ and to provide a hot start if one then wishes to optimize a
modified instance in which the data (c, b, A) is changed.

4.1 Underestimates of the Value Function ϕ

Let ϕt(d, kt, ℓt) = min{hy : By ≥ d, ℓt ≤ y ≤ kt, y ∈ Rp} where the bounds ℓt and kt come
from initial bounds on y and the branching constraints leading to node t ∈ N . Thus ϕ = ϕ1
where node 1 is the root of the tree. Let Ut, Vt denote the indices of the sets of extreme points
and extreme rays generated at node t and U∗ = ∪t∈NUt and V ∗ = ∪t∈NVt be all the extreme
points and extreme rays of Ω generated in the course of the algorithm. Given an extreme ray
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(vi0, v
i
1, v

i
2) ∈ Ω with i ∈ Vt generated at node t, the feasibility constraint associated to this ray is

vi0d+ β ≤ 0 where β = vi1ℓ
t − vi2k

t and the value associated to an extreme point (uj0, u
j
1, u

j
2) ∈ Ω

with j ∈ Ut is uj0d+ α where α = uj1ℓ
t − uj2k

t.
We define the function

ψt(d) =

{
+∞, if vi0d+ vi1ℓ

t − vi2k
t > 0 for some i ∈ V ∗,

max
i∈U∗

(ui0d+ ui1ℓ
t − ui2k

t), otherwise.

This function has the following property.

Lemma 1 ψt(d) ≤ ϕt(d, k
t, ℓt) for all t ∈ N .

Proof. If there exists some extreme ray (vi0, v
i
1, v

i
2) ∈ Ω, i ∈ V ∗ with vi0d+ vi1ℓ

t − vi2k
t > 0, then

node t is infeasible for the corresponding bounds ℓt and kt on the y variables. Otherwise, each
extreme point (uj0, u

j
1, u

j
2) ∈ Ω, j ∈ U∗ provides a lower bound ψt(d) which is a lower bound

uj0d+ uj1ℓ
t − uj2k

t on ϕt(d, k
t, ℓt). 2

Next we can use the information obtained by branching on the y-variables to strengthen the
underestimating functions higher up in the tree.

Lemma 2 Let Lt be the leaves of the subtree of the branch-and-cut tree rooted at t, then we
have ψ∗

t (d) = minu∈Lt ψu(d) ≤ ϕt(d, k
t, ℓt) for all t ∈ N .

Proof. As every leaf of the subtree has bounds (ℓ∗, k∗) with ℓt ≤ ℓ∗ ≤ k∗ ≤ kt and uj1, u
j
2 ≥ 0,

uj0d+uj1ℓ
t−uj2k

t ≤ uj0d+uj1ℓ
∗−uj2k

∗ and so the leaf provides a bound that is at least as strong
as that at node t for every (uj0, u

j
1, u

j
2) ∈ Ω. 2

Finally we note that for a given d, several nodes have the same value of ψ∗
t (d) and so we

can limit our attention to a subset of the nodes. The branch-and-cut tree consists of y-variable
branches and rooted subtrees consisting of only x-variable branches. Let R be the roots of the
corresponding subtrees and, for t ∈ R, let Nt be the set of nodes in the subtree. All nodes
q ∈ Nt have the same y-variable bounds kt, ℓt and thus ψ∗

q (d) = ψ∗
t (d).

So, as we only need to consider the nodes in R, we construct a reduced tree (see Figure 2)
in which, given two nodes p, q ∈ R, there is an edge (p, q) ∈ A if and only if there is a directed
path from p to q in the branch-and-cut tree containing no other node of R.

Theorem 3 For t ∈ R, let L′
t be the leaves of the subtree rooted at t in a reduced tree. Then for

all t ∈ R, ψ∗
t (d) = minu∈L′

t
ψu(d) ≤ ϕt(d, k

t, ℓt) and, for all q ∈ Nt \ {t} we have ψ∗
q (d) = ψ∗

t (d).

Proof. All nodes q ∈ Nt have the same y-variable bounds kt and ℓt. The rest follows from
Lemma 2. 2

Example 4 (Example 1 continued) For the branch-and-cut tree of Example 1, we have:
U1 = [1, 9], U2 = [10, 12], U3 = [13, 15], U7 = [16, 17], V8 = [18], U9 = [19].
Thus U∗ = [1, 19] \ [18] and V ∗ = [18]. Now suppose that we wish to estimate the minimum
cost y∗ such that (x∗, y∗) is feasible with x∗ = (0, 0, 1, 1, 1). Thus we need to calculate ψ∗

t (d) for
t = 1 where d = b−Ax∗. In Figure 1 R = {1, 2, 7, 8, 9} are roots and the subtree rooted at node
2 contains the nodes N2 = {2, 3, 4, 5, 6} while Nt = {t} for each of the nodes t ∈ {1, 7, 8, 9}. The
restricted tree is shown in Figure 2 and the calculation of ψ∗

t (d) in Table 2.
Thus a lower bound on the cost is ψ∗

1(d) = 470. The actual value of ϕ∗ is 498.

16



1

2 7

9 8

y95 = 1

y95 = 0y95 = 0

y85 = 1
y85 = 0

Figure 2: Restricted branch-and-cut tree

node t 1 2 7 8 9
ψt(d) 466 488 470 ∞ 470
ψ∗
t (d) 470 488 470 ∞ 470

Table 2: Evaluation of ψ∗(d)

Note that, because Example 4 is so simple, the edges of the restricted tree are also edges of
the original branch-and-cut tree. In general this will not be the case.

4.2 Sensitivity Analysis

Suppose that (c, b, A) is changed to (c′, b′, A′). To re-optimize, one can choose to keep part
or all of the branch-and-cut tree. At each node q of the tree, having the x-variable branches
Cqx ≥ eq, one can hot start with the Master LP

ζ = min cx+ η

us0(b−Ax) + us1ℓ
q − us2k

q ≤ η s ∈ U∗

vt0(b−Ax) + vt1ℓ
q − vt2k

q ≤ 0 t ∈ V ∗

Cqx ≥ eq

x ∈ Rn
+, η ∈ R1.

Example 5 (Example 1 continued) Suppose that c5 is changed from 65 to c′5 = 100. We
decide to start from the top node of the branch-and-cut tree using arbitrarily just U∗ = [1, 9] and
V ∗ = ∅. The calculations are shown in Table 3 and Figure 3. A list of the new extreme points
20 and 21 generated is given in the appendix. Now the set of extreme points of Ω has increased,
so a strengthened underestimate of ϕ using U∗ = [1, 17] ∪ [19, 21] and V ∗ = [18] can be used if
further changes are to be evaluated.

Note that if Algorithm BxCy is used, changes in the profit vector c are easily dealt with.
On the other hand, if b or A change, the added inequalities in the (x, y)-variables have to be
updated. This requires further work, but is straightforward for cuts described by functions such
as the MIR function Fα or its generalizations.

5. Further remarks

One question that has not been discussed is the convergence of the two Benders’ algorithms.
Algorithm BCxy is a standard branch-and-cut algorithm. The number of possible cuts is limited
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node ζ x∗ Comments
1 610.4 (0.88,0.81,0.3,1,0) Initial solution of BM.

1 optimality cut added.
611.2 (0.55,1,0.45,1,0)

Branch on x1
2 Branch x1 = 1. 1 optimality cut added

617 (1,1,0,1,0) y82, y84, y91, y92 /∈ Z
3 Branch: y84 = 1, x1 = 1. Add y84 = 1 in SP

617 (1,1,0,1,0) y91, y92 /∈ Z
4 Branch y91 = 1 y84 = 1, x1 = 1. Add y91 = 1 in SP.

New Incumbent.
Prune and Backtrack

5 617∗ Branch y91 = 0, y84 = 1, x1 = 1. Prune by bound and Backtrack
6 617∗ Branch y84 = 0, x1 = 1. Prune by bound and Backtrack
7 620∗ Branch x1 = 0

Search Completed

Table 3: CFL with Single-Sourcing. ∗ indicates lower bound on ζ.
1

ζ = 611.2

7
ζ = 620∗

2
ζ = 617

6
ζ = 617∗

3
ζ = 617

x1 = 1

x1 = 0

y84 = 1
y84 = 0

4

y91 = 1

ζ = 617
5

y91 = 0

ζ = 617∗

Figure 3: Branch-and-cut tree for re-optimization

to the number of extreme points and rays of the dual region Ω, so the only concern is that arising
in branch-and-bound if the x-space is unbounded. For algorithm BxCy there is theoretically
the problem of the non-convergence of certain cutting plane algorithms, but in practice this is
avoided by stopping cut-generation as in cases 5 and 6 and using no-good feasibility or optimality
cuts. As the x-variables are 0-1, there is no problem if the subproblems are solved to optimality.

The version BCxy of Benders’ algorithm proposed here appears to be suitable for problems
with a relatively small number of integer y-variables, or problems such as CFL with single-
sourcing in which one expects to have a small number of y-variables taking fractional values.
Even though the algorithm proposed is a straightforward branch-and-cut algorithm, its imple-
mentation requires several choices. Should one always branch on x-variables in preference to
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y-variables? After solving the initial LP relaxation, should one immediately impose integral-
ity on the y-variables, or should one first develop a tree of x-variable branches? Which of the
procedures for generating more effective dual solutions should one select? As there is an over-
abundance of inequalities which can slow down the solution of the relaxed master LPs, which
should be invoked at a given node and which should be discarded?

Algorithm BxCy appears to be more suitable for problems with many integer variables
and/or multiple subproblems, in particular, as in [16], to two-stage stochastic programs with
integer recourse of the form

min{cx+

Q∑
q=1

pqhy : Ax+Bqyq ≥ bq, q ∈ [1, Q], x ∈ Rn
+/Zn

+, y
q ∈ Zp

+ q ∈ [1, Q]},

where q ∈ [1, Q] denote the scenarios each of probability pq. If only the requirements vectors
bq are random, the subproblem is the same for each possible scenario, so each extreme point or
ray can generate a cut in the MLP for each of the Q scenarios. Here there are further choices:
When there are multiple related subproblems, which should one choose to treat first so as to
generate good information for the other subproblems? How much information should be kept,
etc.?

The approximation of the value function for the subproblem developed in Section 5 is clearly
related to the development of a value function from a branch-and-bound tree, for use in sensi-
tivity analysis, see Wolsey [42], Schrage and Wolsey [33]. Apart from its importance for post-
optimality analysis of mixed-integer programs, calculating value functions is of interest in the
study of cooperative games. Value functions can also appear in bilevel optimization problems
that are reformulated as single-level optimization problems, however the resulting constraints
are highly non-convex.
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6. Annexe
The dual extreme points and rays generated in Example 1 are shown below, where the unit vector associated to
client i and location j is denoted by eij .

Node 1:
u1
0=(30, 8, 36, 96, 48, 88, 44, 124, 128, 50), (1, 0, 0, 1, 0),

(0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 32, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 22, 0, 31, 0, 0, 62, 0, 32, 0, 0, 32, 0, 0, 0, 0, 0)
u2
0=(10, 8, 24, 64, 32, 66, 11, 62, 96, 50), (0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u3
0=(20, 12, 36, 96, 48, 88, 22, 124, 128, 75), (0, 1, 0, 1, 1),

(0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 0, 0, 0, 0, 0, 0, 25, 0, 0)
u4
0=(20, 8, 36, 64, 32, 66, 22, 62, 96, 100), (0, 0, 0, 0, 0),

(0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 50, 0, 0)
u5
0=(30, 8, 36, 64, 32, 66, 22, 93, 96, 50), (0, 0, 0, 0, 0),

(10, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u6
0=(10, 8, 24, 64, 32, 88, 11, 62, 96, 50), (0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u7
0=(10, 8, 24, 64, 32, 66, 11, 93, 96, 50), (0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u8
0=(20, 8, 36, 64, 32, 88, 22, 93, 96, 50), (0, 0, 0, 0, 0),

(0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 22, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u9
0=(20, 8, 36, 64, 32, 66, 22, 93, 96, 100), (0, 0, 0, 0, 0),

(0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 50, 50, 0, 0)

Node 2:
u10
0 =(20, 12, 36, 64, 32, 66, 22, 62, 128, 75), (0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 25, 0, 0)
u10
2 =32e95

u11
0 =(20, 12, 36, 64, 48, 66, 22, 93, 128, 75), (0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 0, 0, 0, 0, 0, 0, 25, 0, 0)
u11
2 =32e95

u12
0 =(20, 8, 36, 64, 32, 66, 22, 93, 96, 50), (0, 0, 0, 0, 0),

(0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u12
2 =0e95

Node 3:
u13
0 =(10, 8, 24, 96, 32, 66, 11, 93, 96, 50), (0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u13
2 =0e95

u14
0 =(20, 8, 48, 96, 48, 66, 33, 93, 96, 50), (0, 0, 0, 0, 1),

(0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 12, 0, 0, 0, 0, 0, 32, 0, 0, 16, 0, 16, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u14
2 =0e95

u15
0 =(20, 8, 48, 96, 32, 66, 33, 93, 96, 100), (0, 0, 0, 0, 1),

(0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 12, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 50, 0, 0)
u15
2 =0e95

Node 7:
u16
0 =(10, 8, 24, 64, 32, 66, 11, 93, 0, 50), (0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u16
1 =128e95

u17
0 =(20, 8, 48, 96, 32, 66, 33, 93, 0, 50), (0, 0, 0, 0, 1),

(0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 12, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u17
1 =128e95
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Node 8:
v180 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v181 =31e95 + 32e85

Node 9:
u19
0 =(10, 8, 24, 64, 32, 66, 11, 93, 0, 50), (0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u19
1 =96e95

u19
2 =31e85

Node 1 of Example 5 when re-optimizing:

u20
0 =(10, 8, 24, 96, 32, 66, 11, 93, 96, 50), (0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
u21
0 =(10, 8, 24, 64, 32, 66, 11, 0, 96, 50), (0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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