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Abstract The heterogeneity of the available physical capital with respect to pro-
ductivity and emission intensity is an important factor for policy design, especially
in the presence of emission restrictions. In a vintage capital model, reducing pollu-
tion requires to change the capital structure through investment in cleaner machines
and to scrap the more polluting ones. In such a setting we show that quantity-based
or a price-based regulation may yield contrasting outcomes. We also show that some
failures in the permits market may undermine its efficiency and that imposing the
emission cap over longer periods plays a regularizing role in the market, that is,
ensures a positive market price of permits and decreases its volatility.

1 Introduction

It is well-established in the economic literature that regulating pollution through
prices (e.g. emission charges) or quantities (e.g. emission quotas) is equivalent. Both
yield the same resource allocation and welfare level. In his seminal paper Weitz-
man (1974) showed that such equivalence does not hold anymore when information
is imperfect, be it on pollution abatement costs or damages. Following Weitzman,
many papers elaborated on the uncertainty issue and the choice of policy instrument
(for some recent papers, see Zhao 2003; Krysiac 2008). A few authors introduced
alternative motives for which this equivalence may not hold. As examples, Finkelsh-
tain and Kislev (1997) found political motives, and Kelly (2005) stressed the role
of general equilibrium effects. The contribution of our paper is to show that this
equivalence may not hold even under perfect information, simply because the cap-
ital stock that generates pollution is not homogeneous. In a vintage capital model,
reducing pollution requires to change the capital structure through investment in
cleaner machines and scrapping the more polluting ones. In such a setting we show
that emission tax and auction emission permits may yield contrasting outcomes.
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The heterogeneity of the available physical capital with respect to productiv-
ity and emission intensity is an important factor for policy design, especially in the
presence of emission restrictions. To decide which machines to scrap and which ma-
chines to buy is an indispensable right of the firm’s management. The vintage model
of a firm that we employ is essentially a version of the one introduced in Barucci
and Gozzi (1998, 2001) and investigated by several authors (see also Feichtinger
et al. (2006, 2008) and the bibliography therein). In particular, the model allows
for investing and scrapping in technologies of any vintage.1 Polluting emissions are
regulated either by a tax or with auctioned pollution permits.

When the price of emission is endogenized by auctioning tradable emission per-
mits (and not set as a tax) it has to be determined by a market equilibrium equation
that involves the emission paths resulting from the optimal behavior of the partici-
pating firms. The derivation and the investigation of this equation is the main goal
of this paper. It turns out that the equation for the auction price of emissions (being
a Fredholm integral equation of the first kind) is ill-posed, in the sense that (i) it may
fail to have a solution; (ii) it may have multiple solutions; (iii) it may not have a pos-
itive solution (in which case the solution does not represent a market price); (iv) the
solution, even it exists and is unique and positive, may be highly volatile and fluctu-
ating. For this reason we introduce period-wise restrictions on the emission, which
correspond to the commitment periods in the terminology of the Kyoto protocol. It is
argued below that such a period-wise emission restriction plays a regularizing role
on the auction price of emissions. Namely, a sufficiently large commitment period
ensures existence, uniqueness (under somewhat restrictive conditions) and (accord-
ing to numerical evidence) positiveness of the solution of the auction price equation.
In addition it decreases the volatility of the auction market.

The paper is organized as follows. In Sect. 2 we present the basic model of a
firm facing an exogenous cost for emissions (a tax) and we characterize its optimal
behavior. The model is of vintage-type, that is, the physical capital is differentiated
with respect to technologies of different dates. In Sect. 3 we present some properties
and analytic expressions of the emission of the firm along its optimal path as a func-
tion of the exogenous costs. Based on this, in Sect. 4 we investigate the equilibrium
equation for the auction of emission permits and introduce period-wise emission
restrictions (commitment periods) as a tool for regularization of the auction price.
Then in Sect. 5 we present some numerical results supporting the regularizing role
of the period-wise emission restrictions.

2 The Firm’s Problem with an Emission Tax

The model of the firm presented below is a version of the PDE-vintage models in-
troduced in Barucci and Gozzi (1998, 2001) and further investigated and applied

1This is a substantial difference with the delay-differential equation models, see Boucekkine et al.
(2004, 2005).
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in a large number of contributions (see Feichtinger et al. 2006, 2008 and the litera-
ture therein). The formal difference of our model with the abovementioned ones is
technical and not essential from a methodological point of view.

First we describe the basic model of a firm that is composed of machines of
different vintages (technologies) τ : K(τ, s) will denote the capital stock of vintage
τ and of age s. That is, K(τ, t − τ ) is the stock of vintage τ that exists at time t ≥ τ .
The maximal life-time of machines of each technology will be denoted by ω, and
the depreciation rate of each technology—by δ. Both are assumed independent of
the vintage just for notational convenience. At any time t > 0 the firm may invest
with intensity I (τ, s) in machines of vintage τ that are of age s at time t (so that
s = t − τ ).

The planning horizon of the firm is [0,∞), therefore the stock of machines of
vintage τ ∈ [−ω,0] which are present in the firm at time t = 0 is considered as
exogenous and will be denoted by K0(τ ). These machines have age −τ at time
t = 0 and may be in use until they reach age ω. Machines of vintage τ > 0 may be
in use for ages s ∈ [0,ω], and their stock at age zero equals zero. Therefore K0(τ )

will be defined as zero for τ > 0. The ages of possible use of any vintage can be
written as [s0(τ ),ω], where s0(τ ) = max{0,−τ }.

Summarizing, the dynamics of each vintage τ ∈ [−ω,∞) is given by the equa-
tion

K̇(τ, s) = −δK(τ, s) + I (τ, s), K(τ, s0(τ )) = K0(τ ), s ∈ [s0(τ ),ω], (1)

where “dot” means everywhere the derivative with respect to s (the argument repre-
senting the age).

The productivity of machines of vintage τ is denoted by f (τ ), while g(τ ) de-
notes the emission per machine of vintage τ . The firm faces costs due to emissions
at an exogenous price v(t) per unit of emission. At this stage of the paper v(t) repre-
sents a tax on pollution set up by a regulator. This price will be endogenized later on
when auctioned emission permits will be considered. Due to this cost the firm may
decide to (possibly temporarily) switch off a part of the machines. Let us denote by
W(τ, s) ∈ [0,1] the fraction of the machines of vintage τ that operate at age s.

The cost of investment I in s years old machines of any vintage will be denoted
by C(s, I ).

The present value (at time t = 0) of the total production of machines of vintage
τ , discounted with a rate r , is

e−rτ

∫ ω

s0(τ )
e−rsf (τ )K(τ, s)W(τ, s)ds,

the cost of emission is

e−rτ

∫ ω

s0(τ )
e−rsv(τ + s)g(τ )K(τ, s)W(τ, s)ds,
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and the investment costs are

e−rτ

∫ ω

s0(τ )
e−rsC(s, I (τ, s))ds.

The firm maximizes the aggregated over time discounted net revenue, that is,
solves the problem

max
I≥0,W∈[0,1]

∫ ∞

−ω
e−rτ

∫ ω

s0(τ )
e−rs[(f (τ ) − v(τ + s)g(τ ))K(τ, s)W(τ, s)

− C(s, I (τ, s))]dsdτ (2)

subject to (1).
The emission of the firm at time t > 0 is given by the expression

E(t) =
∫ t

t−ω
g(τ )K(τ, t − τ )W(τ, t − τ )dτ. (3)

Remark 1 Due to the specific form of the problem there is an easy way to define op-
timality even though the optimal value in (2) may be infinite. Namely (I ∗,W ∗,K∗)
is a solution of (2), (1) if for any T > 0 the restriction of these functions to
DT = {(τ, s) : τ ∈ [−ω, T ], s ∈ [s0(τ ),ω]} is an optimal solution of the problem
in which the integration in (2) is carried out on DT .

Problem (2), (1) fits to the general framework of heterogeneous optimal control
systems developed in Veliov (2008). However, the present problem can be treated
also by the classical Pontryagin optimality conditions for ODEs since it decomposes
along vintages: every technology vintage τ ∈ [−ω,∞) is managed separately by
solving the problem

max
i≥0,w∈[0,1]

∫ ω

s0(τ )
e−rs[(f (τ ) − v(τ + s)g(τ ))k(s)w(s) − C(s, i(s))]ds (4)

subject to

k̇(s) = −δk(s) + i(s), k(s0(τ )) = K0(τ ), s ∈ [s0(τ ),ω]. (5)

If for any fixed τ ∈ [−ω,∞) the triple (i(·),w(·), k(·)) = (I (τ, ·),W(τ, ·),K(τ, ·))
is a solution of this problem, then (I,W,K) is a solution of (2), (1) and vice versa.2

The following is assumed throughout the paper.

(A1) The exogenous data K0, f , g are non-negative and continuous, f and g are
continuously differentiable, g > 0, f ′ > 0, g′ ≤ 0, r ≥ 0, δ ≥ 0;

2 This is not a self-evident fact, but can easily be proven in natural space settings for the two
problems and on the assumptions made below.
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(A2) The cost function C(s, i) is two times differentiable in i, the derivatives C′
i

and C′′
ii are continuous in (s, i), C(s,0) = 0, C′

i (s,0) ≥ 0, C′′
ii ≥ εC > 0;

(A3) The price of emission, v(·), is a measurable bounded function.3

Assumption (A1) means that newer machines are more productive and less polluting
than older machines Under these conditions problem (2), (1) has a unique solution
(I ∗[v],W ∗[v],K∗[v]). The corresponding emission given by (3) will be denoted by
E∗[v].

Since W enters only in the objective function, clearly we have

W ∗[v](τ, s) =
{

0 if f (τ ) − v(τ + s)g(τ ) ≤ 0,
1 if f (τ ) − v(τ + s)g(τ ) > 0.

(6)

The optimal control i∗ of problem (4), (5) for a fixed τ and v(·) is easy to obtain by
applying the Pontryagin maximum principle (Pontryagin et al. 1962). Namely,

i∗(s) =
{

0 if ξ∗(s) < C′
i (s,0),

(C′
i )

−1(s, ξ∗(s)) if ξ∗(s) ≥ C′
i (s,0),

(7)

where ξ → (C′
i )

−1(s, ξ) is the inverse of the function i → C′
i (s, i) and ξ∗(s) is the

unique solution of the adjoint equation

ξ̇(s) = (r + δ)ξ(s) − (f (τ ) − v(τ + s)g(τ ))w∗(s), ξ(ω) = 0. (8)

3 The Emission Mapping

An exogenously given tax on emission, that is a function v(t) as in assumption (A3),
determines the optimal emission of the firm

E∗[v](t) =
∫ t

t−ω
g(τ )K∗[v](τ, t − τ )W ∗[v](τ, t − τ )dτ, (9)

where (I ∗[v],W ∗[v], I ∗[v]) is the optimal solution at the firm level corresponding
to v. In this section we investigate in some more details the mapping v → E∗[v].

Since the emission restriction takes effect at time t̂ , we consider v as equal to
zero before t̂ . For a technical convenience we assume that t̂ ≥ ω, although this is
not essential.

Denote by V the space of all measurable and locally bounded functions v :
[0,∞) )→ R that equal zero on [0, t̂ ). The space V will be sometimes considered
as a subspace of Lloc

∞ (0,∞), the latter consisting of all measurable function that are
bounded on every bounded interval [0, T ].

3 For reasons that will become clear later we formally allow for negative values of v(t).
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The next proposition claims a specific Lipschitz continuity property of E∗. Since
we allow for negative values of v we denote v− = min{0, v}. In the text below we
shall use also the notation

σ (τ, v) = f (τ ) − vg(τ ).

Proposition 1 Assume that (A1)–(A3) hold. There is a constant c and a non-
increasing function [0,∞) ∋ t → γt > 0 such that for every v′, v′′ ∈ V and t > t̂

|E∗[v′](t) − E∗[v′′](t)| ≤ c

[
∥v′ − v′′∥L∞[t−ω,t+ω]

+ f (t + ω) + ∥v′
− + v′′

−∥L∞[t−ω,t+ω]
γt

|v′(t) − v′′(t)|
]
.

Proof The function γt can be explicitly defined as γt = infτ≤t γ (τ ) > 0, where
γ (τ ) = f ′(τ ) − f (−ω)

g(−ω) g
′(τ ), which is strictly positive according to (A1).

For arbitrarily fixed v′, v′′ ∈ V denote (K = K∗[v′] − K∗[v′′], (I = I ∗[v′] −
I ∗[v′′], (W = W ∗[v′] − W ∗[v′′], (ξ = ξ∗[v′] − ξ∗[v′′]. We have

|E∗[v′](t) − E∗[v′′](t)| ≤
∫ t

t−ω
g(τ )|(K(τ, t − τ )|W ∗[v′](τ, t − τ )dτ

+
∫ t

t−ω
g(τ )K∗[v′′](τ, t − τ )|(W(τ, t − τ )|dτ.

(10)

Using (6) we obtain from the adjoint equation (8), which is satisfied by ξ [vk](s) for
(almost) every τ , that

|(ξ(τ, s)| ≤
∫ ω

s
e−(r+δ)(θ−s)|χ(f (τ ) − v′(τ + θ)g(τ ))

− χ(f (τ ) − v′′(τ + θ)g(τ ))|dθ

≤ ωḡ∥v′ − v′′∥L∞[τ,τ+ω],

where χ(x) = x for x > 0, χ(x) = 0 for x ≤ 0, ḡ = g(−ω) is an upper bound for g,
and we use that χ is Lipschitz continuous with Lipschitz constant equal to one.

From assumption (A2) we easily obtain that (C′
i )

−1(s, ·) is Lipschitz continuous
with Lipschitz constant 1/εC , thus according to (7)

|(I (τ, s)| ≤ ωḡ

εC
∥v′ − v′′∥L∞[τ,τ+ω].

Then from (1) or (5) we obtain that

|(K(τ, s)| ≤ ω2ḡ

εC
∥v′ − v′′∥L∞[τ,τ+ω], s ∈ [s0(τ ),ω].
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Thus the first term in (10) can be estimated by

ω3ḡ2

εC
∥v′ − v′′∥L∞[t−ω,t+ω]. (11)

To estimate the second term in (10) we first note that by a similar argument as
above we estimate

ξ [v′′](τ, s) ≤
∫ ω

s
e−(r+δ)(θ−s)χ(f (τ ) − v′′(τ + θ)g(τ ))dθ

≤ ω
(
f (τ ) + ḡ∥v′′

−∥L∞[τ,τ+ω]
)
.

Using that the function (C′
i )

−1(s, ·) is Lipschitz continuous with Lipschitz constant
≤1/εC , which is implied in a standard way by (A2), and (7) we obtain that

I [v′′](τ, s) ≤ ω

εC

(
f (τ ) + ḡ∥v′′

−∥L∞[τ,τ+ω]
)
.

Hence, using that t ≥ t̂ ≥ ω,

K[v′′](τ, s) ≤ ω2

εC
(f (τ ) + ḡ∥v′′

−∥L∞[τ,τ+ω]). (12)

It remains to estimate the term

|(W(τ, t − τ )| =
{

0 if σ (τ, v′(t)) and σ (τ, v′′(t)) are both positive
or both non-positive,

1 otherwise

in (10). To do this we compare the functions σ (τ, v′(t)) and σ (τ, v′′(t)), assuming
without any restriction that v′(t) ≤ v′′(t). Clearly (W(τ, t − τ ) ≠ 0 (and equals
one) for some τ ∈ [t − ω, t] if and only if σ (τ, v′′(t)) ≤ 0 < σ (τ, v′(t)).

Note also that if v < 0, then σ (τ, v) and σ (τ,0) have both positive signs, hence
the sign of σ (τ, v) does not change if we replace v with v+ := max{0, v}. Since
|v′

+ − v′′
+| ≤ |v′ − v′′|, the estimations below would not change if we replace v′(t)

and v′′(t) with v′(t)+ and v′′(t)+, or equivalently, if we assume that v′(t) ≥ 0.
Due to (A1) (implying that σ (τ, v) is strictly increasing for v ≥ 0) and (A3) the

set

{τ ∈ [t − ω, t] : σ (τ, v′′(t)) ≤ 0 < σ (τ, v′(t))} (13)

(if nonempty) is an interval (τ̃ − ν, τ̃ ], where σ (τ̃ , v′′(t)) = 0 and σ (τ̃ − ν, v′(t))
≥ 0. Then

σ (τ̃ − ν, v′′(t)) = σ (τ̃ , v′′(t)) − σ̇ ( ˜̃τ , v′′(t))ν = −σ̇ ( ˜̃τ , v′′(t))ν,

where ˜̃τ ∈ [τ̃ − ν, τ̃ ]. Subtracting the above equality from σ (τ̃ − ν, v′(t)) ≥ 0 we
obtain that

(v′′(t) − v′(t))g(τ̃ − ν) ≥ σ̇ ( ˜̃τ , v′′(t))ν =
(
f ′( ˜̃τ ) − v′′(t)g′( ˜̃τ )

)
ν. (14)
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Since

0 ≥ σ ( ˜̃τ , v′′(t)) = f ( ˜̃τ ) − v′′(t)g( ˜̃τ ),

we have according to (A1) that

v′′(t) ≥ f ( ˜̃τ )

g( ˜̃τ )
≥ f (−ω)

g(−ω)
.

Then (14) and g′( ˜̃τ ) ≤ 0 imply

(v′′(t) − v′(t))g(τ̃ − ν) ≥
(

f ′( ˜̃τ ) − f (−ω)

g(−ω)
g′( ˜̃τ )

)
ν = γ ( ˜̃τ )ν ≥ γtν.

Hence

ν ≤ ḡ

γt
(v′′(t) − v′(t)).

Thus the measure of the set in (13) does not exceed ḡ
γt

|v′′(t) − v′(t)|. Combining
this with (12), (11) and (10) we obtain the claim of the proposition. !

Lemma 1 For every v ∈ V and t ≥ t̂ the value E∗[v](t) depends only on the re-
striction of v to [t − ω, t + ω].

Proof The proof of this lemma is straightforward: E∗[v](t) depends only on
K∗[v](τ, t − τ ) for τ ∈ [t − ω, t] (see (9)), K∗[v](τ, t − τ ) depends only on
I ∗[v](τ, s) with s ∈ [0,ω], the latter depends only on ξ∗[v](τ, s), which on its turn,
depends on v(θ) with θ ∈ [τ, τ + ω] (see (8)). !

The analysis of the market price of emissions in the next section involves a rather
complicated functional equation for v. Together with the general case we consider
also a particular cost function C(s, I ) for which the equation substantially simpli-
fies.

(A4) C(s, I ) = 1/2c(s)I 2, where c(s) > 0, s ∈ [0,ω], is a measurable non-
increasing function.

The advantage of the above assumption, which is still economically meaningful, is
that the optimal investment becomes a linear function of the “shadow price” of the
capital stock. Namely, (7) becomes

I ∗[v](τ, s) = ξ∗(τ, s)
c(s)

, s ∈ [0,ω), (15)

where ξ(τ, ·) is the solution of the adjoint equation (8), that is,

ξ̇(τ, s) = (r + δ)ξ(τ, s) − σ (τ, v(τ + s))W ∗[v](τ, s), ξ(τ,ω) = 0. (16)
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Note that due to (A1) the function τ −→ σ (τ, v), restricted to an interval
[t − ω, t], either has a definite sign or has a single zero in this interval, denoted
further by θ(t, v). In addition, we set θ(t, v) = t − ω or θ(t, v) = t if σ (τ, v) > 0 or
σ (τ, v) < 0 in [t − ω, t], respectively. With this notation we have, according to (6),
that W ∗[v](τ, t − τ ) = 1 for τ ∈ (t − ω, t) if and only if τ ∈ (θ(t, v(t)), t).

Lemma 2 Let assumptions (A1) and (A4) hold and let v ∈ V . Then for every t ≥ t̂

E∗[v](t) =
∫ t

θ(t,v(t))

∫ α

θ(t,v(t))∨θ(α,v(α))
g(τ )κ(t, τ,α − τ )σ (τ, v(α))dτ dα

+
∫ θ(t,v(t))+ω

t
e−(r+δ)(α−t)

∫ t

θ(t,v(t))∨θ(α,v(α))
g(τ )κ(t, τ, t − τ )

× σ (τ, v(α))dτ dα

+
∫ t+ω

θ(t,v(t))+ω
e−(r+δ)(α−t)

∫ t

θ(α,v(α))
g(τ )κ(t, τ, t − τ )σ (τ, v(α))dτ dα,

where a ∨ b := max{a, b} and

κ(t, τ,β) =
∫ β

0

1
c(s)

e−δ(t−τ−s)−(r+δ)(β−s)ds.

The proof of this lemma uses the Cauchy formula for the solution ξ of the adjoint
equation (16), the formula (15) for the optimal control, the Cauchy formula for
the corresponding solution K∗[v] of (1), and (9). This results in an expression for
E∗[v](t) in the form of a triple integral depending only on the data and v, from
which one can derive the expression in the lemma after a sequence of changes of
the order and the variables of integration. We skip the cumbersome calculations.

Definition We call the price function v ∈ V regular if f (τ ) − v(t)g(τ ) > 0 for all
τ ≥ 0 and t ∈ (τ, τ + ω).

In other words, regularity means that the price v(t) does not invoke switch-off
of existing machines. In the context of the emission restrictions the existence of a
regular auction price (see next section) would mean that the environmental goals can
be achieved only by appropriate investment policies (without premature scrapping).

For a regular v ∈ V the expression for E∗[v] substantially simplifies, since
θ(t, v(t)) = t − ω for all t ≥ t̂ . Hence,

E∗[v](t) =
∫ t

t−ω

∫ α

t−ω
g(τ )κ(t, τ,α − τ )σ (τ, v(α))dτ dα

+
∫ t+ω

t
e−(r+δ)(α−t)

∫ t

α−ω
g(τ )κ(t, τ, t − τ )σ (τ, v(α))dτ dα.
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Having in mind the definition of σ (τ, v) we split each of the above outer integrals
into two parts: one term depending on v, the other—independent of v. The result-
ing expression that is independent of v is exactly the emission corresponding to
v(t) ≡ 0. Having in mind also that v(t) = 0 for t < t̂ we obtain the following lemma.

Lemma 3 Let assumptions (A1) and (A4) hold and let v ∈ V be regular. Then for
every t ≥ t̂

E∗[v](t) = E∗[0](t) −
∫ t+ω

t̂∨(t−ω)
ϕ(t,α)v(α)dα, (17)

where

ϕ(t,α) =
{∫ α

t−ω g2(τ )κ(t, τ,α − τ )dτ if α ∈ [t − ω, t],
e−(r+δ)(α−t)

∫ t
α−ω g2(τ )κ(t, τ, t − τ )dτ if α ∈ [t, t + ω]

and a ∨ b = max{a, b}, a ∧ b = min{a, b}.

The following properties of the kernel ϕ(t, ·) play a role in the study of the auc-
tion price of emissions defined in the next section.

Lemma 4 Let assumptions (A1) and (A4) hold. Then for every t > t̂ the function
ϕ(t, ·) : [t − ω, t + ω] has the following properties:

ϕ(t, t − ω) = ϕ(t, t + ω) = ϕ′
α(t, t − ω) = ϕ′

α(t, t + ω) = 0,

ϕ′
α(t,α) is strictly positive (negative) on (t − ω, t) (on (t, t + ω), respectively).

That is, the “mass” of the kernel ϕ(t, ·) is concentrated mostly around α = t .

4 The Auction Price of Permits and Its Regularization

We consider an economy consisting of n identical firms described by the model
considered in Sect. 2. Let Ê(t) be a cap for the emission permits of the economy for
t ≥ t̂ . As before we assume that the regulation (here, the emission cap) is known by
the firms at time t = 0 for all the future. The cap takes effect at time t̂ ≥ ω.

The emission permits are auctioned at time t̂ . The main issue investigated in this
section is: does the auction (the primary market) really determine the price v(t)?
Since the answer is “NO”, we analyze theoretically and numerically the primary
market behavior and the appearance of market failure.

The equation for the auction price of emission permits, v(t), is

E∗[v](t) = Ê(t)/n, t ≥ t̂ . (18)

The market would determine the price of permits if
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(i) equation (18) has a solution v(·) ∈ V ;
(ii) the solution is unique;

(iii) the solution is positive for all t .

In general, neither of the above requirement is fulfilled. The first needs assumptions
for the data, and these assumptions are difficult to specify due to the complexity
of (18) (even in the special case considered in Lemma 3). The second requirement
is obviously not fulfilled if, for example, Ê(t) ≡ 0, since if v is a solution of (18),
then every ṽ with ṽ(t) > v(t) would also be a solution. Even if the above two pos-
sibilities could be classified as “academic”, as we show below, a failure of the third
requirement could be rather realistic.

Problems for which a meaningful solution may fail to exist (in the present case—
a positive market price) or the solution is not unique (indeterminacy), or a unique so-
lution exists but is arbitrarily sensitive to perturbations, are usually called ill-posed.
A modification (approximation) of an ill-posed problem that turns it into a well
posed one is called regularization. Regularization methods for equations of the kind
we face in (18) are developed first by A. Tikhonov in the 60-th years of the last
century. The regularization that we employ below is different and has the advantage
that it has a clear economic meaning and is implementable in the real market (see
the next two paragraphs for further explanations).

In the simplest case, in which the price function v solving (18) is regular, it solves
also the equation

∫ t+ω

t̂∨(t−ω)
ϕ(t,α)v(α)dα = E∗[0](t) − Ê(t) (19)

(we skip the division by n considering Ê(t) as already divided by n). This is
a Fredholm integral equation of the first kind on the infinite interval [t̂ ,+∞).
Such equations are inherently ill-posed. To see that it is enough to add to a so-
lution v a highly fluctuating term, such as sin(nt). Then v(t) + sin(nt) would be
a solution of the same equation with the right-hand side modified by the quantity∫ t+ω
t̂∨(t−ω)

ϕ(t,α) sin(nα)dα, which is arbitrarily small when n is large enough. Thus
an arbitrarily small disturbance in the right-hand side can lead to a finite (even arbi-
trarily large) change of the solution. This difficulty is caused by the smoothing ef-
fect on v of the integration with ϕ: high-frequency components of v are “smoothed
out”. Therefore one can expect that computing v would tend to amplify any high-
frequency component or irregularity of the right-hand side. In effect, the right-hand
side of (19) has to be somewhat “smoother” than the solution v in order to obtain
satisfactory numerical approximation (Hansen 1992).

A good numerical method to solve a Fredholm integral equation of the first
kind should be able to somehow filter out the high-frequency components in the
singular value expansion of the solution (if such exists). Different methods of
regularization aimed at finding reasonable numerical approximation to the so-
lution are known (Tikhonov and Arsenin 1977; Delves and Mohamed, 1985;
Kress 1989). However, we stress that our aim is not just to solve the price equation
(19) or some of its more complicated nonlinear versions (say, that resulting from
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Lemma 2). Our ultimate goal is to imitate the behavior of the auction market, there-
fore the regularization we apply for solving (18) should be implementable also in
the real auction market. We argue below and in the next section that a relevant regu-
larization mean is to formulate the emission constraint (18) period-wise, rather than
at any time instant. This amounts to applying regularization by time-aggregation, re-
lated to the Nyström’s method (Delves and Mohamed, 1985, Chap. 12). In contrast
to the celebrated singular expansion/decomposition this method is directly applica-
ble also in the general (nonlinear) case of (18) and has a clear policy implementation.

Namely, we introduce the discrete version of the emission mapping E∗ as fol-
lows. Assume that an emission restriction is given period-wise: Êk = 1

tk−tk−1
×

∫ tk
tk−1

Ê(t)dt is the cap for the emission intensity in the time-period [tk−1, tk]. For
simplicity we assume that all time periods have the same length h > 0, thus tk = kh,
and also that ω = mh, t̂ = k̂h for appropriate natural numbers m and k̂. Correspond-
ingly, the price of emission will be constant, vk , on each interval [tk−1, tk) and zero
for k ≤ k̂. Thus instead of the space V of price functions we consider

V h = {(v1, v2, . . .) : vk ∈ (−∞,+∞), vk = 0 for k ≤ k̂},

which can be viewed as a subset of V by piece-wise constant embedding of
V h in V . The emission resulting from v ∈ V h becomes a vector E∗h[v] =
(E∗h

1 [v],E∗h
2 [v], . . .), where

E∗h
k [v] = 1

h

∫ tk

tk−1

∫ t

t−ω
g(τ )K∗[v](τ, t − τ )W ∗[v](τ, t − τ )dτ dt. (20)

Lemma 1 can be directly translated to the discrete case. It claims that E∗h
k [v]

depends only on vk−m, . . . , vk+m.
Then instead of the price equation (18) we consider the equation (skipping again

the division by n)

E∗h
k [v] = Êh

k , k ≥ k̂ (21)

for v ∈ V h.
Under the conditions of Lemma 3 the period-wise version of the emission as

function of v ∈ V h becomes (after a change of the order of integration):

E∗h
k [v] = E∗h

k [0] −
k+m∑

i=k̂∨(k−m)

1
h

∫

Bki

ϕ(t,α)dt dαvi

=: E∗h
k [0] −

k+m∑

i=k̂∨(k−m)

ah
kivi, k ≥ k̂, (22)

where Bki is the square [ti , ti+1]×[tk−1, tk] in the (α, t)-plane for i = k−m, . . . , k+
m − 2, while Bk,k−m is the triangle with vertices {(tk−m−1, tk−1), (tk−m, tk−1),

(tk−m, tk)}, and Bk,k+m is the triangle with vertices {(tk+m−1, tk−1), (tk+m−1, tk),
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(tk+m, tk)}. However, the numerical analysis given in the next section, as well as
the proposition below apply to the general case of an emission map E∗h

k [v] defined
in (20).

In the rest of this section we address the issue of existence of a solution to the
(nonlinear non-smooth) equation (21) for v ∈ V h. First of all we claim a certain
Lipschitz continuity property of the mapping E∗h, similarly as in Proposition 1.

Proposition 2 Assume that (A1)–(A3) hold. There is a constant c and a function
γt > 0 (the same as in Proposition 1) such that for every v′, v′′ ∈ V h and k > k̂

|E∗h
k [v′] − E∗h

k [v′′]|

≤ c

[
max

k−m<i≤k+m
|v′

i − v′′
i | +

f (tk+m) + maxk−m<i≤k+m |v′
i− + v′′

i−|
γtk

|v′
k − v′′

k |
]
.

The claim of this proposition follows directly from Proposition 1 and (20).
In the existence result presented below we consider the truncated version of (21).

That is, given the aggregation time-step h > 0 we solve the finite system of equa-
tions

E∗h
k [v] = Êk, k = k̂ + 1, . . . ,M, (23)

with respect to v = (vk̂+1, . . . , vM) where M is presumably a large number, so that
T = Mh is also “very large”. According to the discrete version of Lemma 1, E∗h

k [v]
depends only on vk−m, . . . , vk+m. The values vi for i = 1, . . . , k̂ are fixed a priori
equal to zero, the values vM+1, . . . , vM+m will be considered as fixed parameters.
Thus (23) becomes a system of M − k̂ equations for the M − k̂ unknown variables
vk̂+1, . . . , vM .

It as a rather difficult task to prove that the solutions of (23) would converge to
a solution of (21) when M −→ +∞ (this is not simple also in the linear case (22)).
The truncation of the time horizon is based on the common belief that the (hypo-
thetical) knowledge of the economic factors thousands of years from now would
not essentially influence the behavior of the economic agents in the next 100 years.
Still, the plausibility of the truncation is not evident due to the possibly unlimited
technological progress (this is clearly exhibited by the requirement (24) in the proof
of the proposition below).

Another support for the truncation of the time horizon is provided by our nu-
merical experiments, where the auction price for the next 80 years (to which we re-
strict the numerical analysis in the next section) remains practically the same when
(23) is solved for T = Mh = 150 or more years, and also when the parameters
vM+1, . . . , vM+m vary in a reasonable range (taking all of them equal to zero is a
relevant choice, since it means that no emission cap is posed after time T = Mh).

Proposition 3 Let M > k̂ and ē > 0 be arbitrarily fixed. Then there exists v̄ such
that for every Êk , k = k̂ + 1, . . . ,M , with Êk ∈ [0, ē] and any choice of vi ∈ [0, v̄]
for i = M + 1, . . . ,M + m system (23) has a solution vk̂+1, . . . , vM ∈ [−v̄, v̄].
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Proof First we shall define the number v̄ by the requirements

v̄ ≥ 2
f (Mh)

g(Mh)
, v̄ ≥ 2ē,

h

2
e−h(r+δ)(f (t̂ ) + 0.5v̄g(Mh)) ≥ max

s∈[0,ω]
C′

i

(
s,

16eδhē

h(ω − h)g(Mh)

)
.

(24)

The above definition of v̄ applies to the more interesting case h < ω. The alternative
case requires minor changes in the last inequality.

After having v̄ fixed so that (24) are satisfied we denote

V M
h (v̄) = {v = (vk̂+1, . . . , vM) : |vk| ≤ v̄}.

The proof utilizes the Brouwer fixed point theorem. Therefore we reformulate
system (23) as a fixed point equation:

Fk(v) = vk, k = k̂ + 1, . . . ,M, where Fk(v) = vk + βk(E
∗h
k [v] − Êk),

and βk > 0 are chosen in such a way that

βk max
v∈V M

h (v̄)
E∗h

k [v] ≤ v̄

2
, βk ≤ 1.

The above maximum exists due to the continuity of E∗h
k [v] and the compactness of

V M
h (v̄).

We shall prove that F(v) = (Fk̂+1(v), . . . ,FM(v))) ∈ V M
h (v̄) for v ∈ V M

h (v̄),
which would imply the claim of the proposition due to the Brouwer fix point theo-
rem, since F is continuous and V M

h (v̄) ⊂ RM−k̂ is convex and compact.
Take an arbitrary v ∈ V M

h (v̄) and k ∈ {k̂ + 1, . . . ,M}. All we have to prove is that
−v̄ ≤ Fk(v) ≤ v̄.

To prove the second inequality we consider two cases:
1. Let vk ≥ v̄/2. Then for τ ∈ [0,Mh] we have f (τ ) − vkg(τ ) ≤ f (Mh) −

0.5v̄g(Mh) ≤ 0 according the first inequality in (24). Hence (see (9)) E∗h
k [v] = 0

and Fk(v) = vk − βkÊk ≤ vk ≤ v̄.
2. Let vk < v̄/2. Then Fk(v) ≤ vk + βkE

∗h
k [v] ≤ v̄/2 + v̄/2 = v̄ according to the

choice of βk .
To prove that Fk(v) ≥ −v̄ we consider the next two cases.
3. Let vk ≥ −v̄/2. Then Fk(v) ≥ −v̄/2 − βkÊk ≥ −v̄/2 − ē ≥ −v̄ according to

the second inequality in (24).
4. Let vk < −v̄/2. Clearly W ∗[v](τ, s) = 1 if τ + s ∈ [tk−1, tk]. Then from the

adjoint equation (8) we have that for τ ∈ [tk − ω, tk−1]

ξ [v](τ, s) =
∫ ω

s
e−(r+δ)(θ−s)(f (τ ) − v(τ + θ)g(τ ))W ∗[v](τ, θ)dθ
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and if s ∈ [tk−1 − τ, tk − τ ] then

ξ [v](τ, s) ≥
∫ tk−τ

s
e−(r+δ)(θ−s)(f (τ ) − vkg(τ ))dθ,

and if s ∈ [tk−1 − τ, tk−1 − τ + h/2] then

ξ [v](τ, s) ≥ e−(r+δ)h h

2

(
f (t̂ ) + v̄

2
g(Mh)

)
.

Thus for τ ∈ [tk − ω, tk−1] and s ∈ [tk−1 − τ, tk−1 − τ + h/2]

I ∗[v](τ, s) ≥ (C′
i )

−1
(

s, e−(r+δ)h h

2

(
f (t̂ )+ v̄

2
g(Mh)

))
≥ 16eδhē

h(ω − h)g(Mh)
=: I #,

where we use the last inequality in (24). Then from (1) we obtain that for τ ∈
[tk − ω, tk−1] and s ∈ [tk−1 − τ + h/4, tk−1 − τ + h/2]

K∗[v](τ, s) ≥ h

4
e−δhI # = 4ē

(ω − h)g(Mh)
.

Finally we estimate

E∗h
k [v] = 1

h

∫ tk

tk−1

∫ t

t−ω
g(τ )K∗[v](τ, t − τ )W ∗[v](τ, t − τ )dτ dt

≥ 1
h

∫ tk−1+h/2

tk−1+h/4

∫ tk−1

tk−ω
g(τ )K∗[v](τ, t − τ )W ∗[v](τ, t − τ )dτ dt

= 1
h

∫ tk−1

tk−ω

∫ tk−1−τ+h/2

tk−1−τ+h/4
g(τ )K∗[v](τ, s)ds dτ

≥ 1
h

(ω − h)
h

4
g(Mh)

4ē

(ω − h)g(Mh)
= ē.

Using this we obtain Fk(v) ≥ vk + βk(E
∗h
k [v] − Êk) ≥ vk ≥ −v̄. This proves the

invariance of V M
h (v̄) with respect to F and the proposition. !

Thus Proposition 3 ensures at least a positive answer to the issue (i) at the be-
ginning of the section at least for the truncated equation (23). Then in the special
case where assumption (A4) holds and (23) has a regular solution v with the natural
choice of the parameters vM+1 = · · · = vM+m = 0, this must be the unique regu-
lar solution (due to the freedom in the choice of the right-hand side Êk). Issue (iii)
from the beginning of this section remains unclear, and will be somewhat enlight-
ened by the numerical experiments in the next section. Here we only mention that
under (A4) and the assumption Ê(t̂) = E∗[0](t̂ ) (that is if the cap starts from the
unconstrained emission at t̂ ) the market equation (18) cannot have a regular positive
solution. Indeed, if it has a regular solution v, then v solves also (19). This equation
applied for t = t̂ shows that v cannot be positive on (t̂ , t̂ + ω) due to Lemma 4.
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5 Numerical Analysis of the Market Price of Emission

In this section we present some experimental results for the auction price of permits
assuming that the firms participating to the auction are identical (thus the price is
determined by (18), if a positive solution exists). In particular we investigate the role
of the aggregation step h. Following the terminology used under the Kyoto proto-
col, we shall call it a commitment period, and h will be its length.4 The existence
and the regularity of the auction price for emission permits will be scrutinized for
different h.

The following data specifications are used in the experiments:

T = 120—time horizon;
ω = 20—maximal age of capital;
δ = 0.1—depreciation rate of each technology;
r = 0.04—discount rate;
K0(τ ) for vintages τ < 0 is obtained by solving the firm’s optimization problem
with v(·) ≡ 0 on [−ω, T ];
K0(τ ) = 0 for vintages τ > 0;
f (τ ) = 3 + 0.03τ for τ ∈ [−ω, T ]—the productivity of one unit of capital of
vintage τ ;
g(τ ) = 2.5

1.7+ln(2+ω+τ ) +0.0002 for τ ∈ [−ω, T ]—the emissions produced by one
unit of capital of vintage τ ;
C(s, i) = 20(1−s/ω)i+0.5i2—the cost of investment i in s-years-old machines
of any vintage;

In the figures below the plotted time horizon is 80 years. However, the calculations
are made for a time horizon of 120 years, in order to eliminate the truncation error.
The results obtained with larger time horizons are visually indistinguishable from
the ones given below.

In the first group of plots (Figs. 1 and 2) a constant emission cap Ê(t) = 300
is imposed at time t̂ = 30. This cap is below the level of emission that would be
produced without any emission restriction (represented by the dash-dotted line in
Fig. 1). The solid line represents the emission of the firm obeying the cap. It is
remarkable that the reduction of the emission of the firm begins much earlier than
t̂ = 30—this is the so called anticipation effect. The left plot in Fig. 2 represents
the price of the emission permits in the primary market (as auctioned). In fact, it is
obtained by using a small commitment periods of h = 1 year. The price is highly
oscillating close to the time at which the cap is imposed, as it is expected from
the explanations given at the beginning of Sect. 4. The right plot corresponds to
a commitment periods of h = 5 years, for which the fluctuations of the price are
substantially lower. Although the primary market is efficient in the considered test
example (that is, it determines a positive price of the emissions) a larger commitment
period h clearly decreases the volatility of the market.

4Under the Kyoto protocol of the UN Framework Convention on Climate Change, the (first) com-
mitment period is a five-year period covering 2008 to 2012.
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Fig. 1 Emission resulting
from an emission restriction
posed at time t = 30

Fig. 2 Auction price of permits with commitment periods of 1 year (left) and auction price with
commitment period of 5 years (right) resulting from an emission restriction posed at time t = 30

Fig. 3 Emissions (left) and a solution to the price equation (18) (right) resulting from an emission
restriction posed at time t = 30

In Fig. 3 the emission cap imposed at time t = 30 is first constant, starting from
the emission level before the beginning of the emission restriction (the dash-dotted
line represents the unrestricted emissions), then it decreases quadratically. The solid
line represents the emission of the firm obeying the cap. Here it is remarkable that (in
contrast to the first scenario) there is no visible reduction of the emission level before
time t = 30, i.e. no visible anticipation effect. This phenomenon will be discussed
in more detail in the continuation of the paper.

The right plot in Fig. 3 represents the auctioned price of the emission permit. As
before it is obtained by using small commitment periods of h = 1 year. In contrast
to the first scenario, here the auction fails in two time-periods. First this happens
immediately after the introduction of the emission cap at time t̂ = 30, then around
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Fig. 4 Auction price of emission permits for commitment periods h = 5 years (left) and h = 10
years (right)

the change of the shape of the cap in year t = 50: the solution of the auction equation
(18) takes negative values. In addition, the solution is highly oscillating around these
times. The regularization of the market by posing the cap in commitment periods is
seen on Fig. 4. The left plot corresponds to commitment periods of h = 5 years. The
market still fails immediately after the introduction of the cap, but not around the
change of the shape of the cap. The right plot in Fig. 4 represents the price function
with commitment periods of 10 years. The market is now efficient and looks quite
regular.
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