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Abstract

In this paper we introduce a new primal-dual technique for convergence analysis of
gradient schemes for non-smooth convex optimization. As an example of its application,
we derive a primal-dual gradient method for a special class of structured non-smooth
optimization problems, which ensures a rate of convergence of the order O( 1

k ), where k is
the iteration count. Another example is a gradient scheme which minimizes a non-smooth
strongly convex function with known structure with the rate of convergence O( 1

k2 ). In
both cases the efficiency of the methods is higher than the corresponding black-box lower
complexity bounds by an order of magnitude.
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1 Introduction

Motivation. This paper continues the research started in [3], where it was shown that
some structured non-smooth optimization problems can be solved with efficiency estimates
O(1

ε ), where ε is the desired accuracy of the solution. This complexity is much better than
the theoretical lower complexity bound O( 1

ε2 ) (see [2]). This improvement, of course, is
possible because of certain relaxation of the standard black box assumption. Instead, it
was assumed that our problem has an explicit and quite simple minimax structure. The
numerical scheme proposed in [3] has a drawback, which decreases its practical efficiency.
In this scheme the number of steps must be fixed in advance. It is chosen in accordance
to a worst-case complexity analysis.

In this paper we propose several new primal-dual gradient schemes for the same class
of problems as in [3]. However, our schemes now are free from the above deficiency. They
are derived from a new primal-dual symmetric technique for convergence analysis, which
we call the excessive gap condition.

The paper is organized as follows. In Section 2 we introduce our model of optimization
problem and recall several useful facts from [3]. In Section 3 we describe the excessive gap
condition. In the next two sections we present two different strategies for maintaining the
condition during the optimization process. In Section 6 we give the convergence result
of the order O( 1

k ), where k is the iteration counter. This convergence result is valid for
all non-smooth functions described by our model. However, if we assume more, (namely,
the strong convexity of the primal objective), then the convergence can be improved
up to O( 1

k2 ). This improvement is presented in the last Section 7. Note that both
complexity results improve the corresponding general lower complexity bound by an order
of magnitude.

Notation. In what follows we work with different primal and dual spaces equipped by
corresponding norms. For sake of notation, we apply the following convention. The (pri-
mal) finite-dimensional real vector space is always denoted by E, possibly with an index.
This space is endowed with a norm ‖ · ‖, which has the same index as the corresponding
space. The space of linear functions on E is denoted by E∗. For s ∈ E∗ and x ∈ E we
denote 〈s, x〉 the value of s at x. The scalar product 〈·, ·〉 is marked by the same index as
E. The norm for the dual space is defined in the standard way:

‖s‖∗ = max
x

{〈s, x〉 : ‖x‖ = 1}.

For an operator A : E1 → E∗
2 we define adjoint operator A∗ : E2 → E∗

1 in the following
way:

〈Ax, u〉2 = 〈A∗u, x〉1 ∀x ∈ E1, u ∈ E2.

The norm of such operator is defined as follows:

‖A‖1,2 = max
x,u

{〈Ax, u〉2 : ‖x‖1 = 1, ‖u‖2 = 1}.

Clearly,

‖A‖1,2 = ‖A∗‖2,1 = max
x

{‖Ax‖∗2 : ‖x‖1 = 1} = max
u

{‖A∗u‖∗1 : ‖u‖2 = 1}.
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Hence, for any u ∈ E2 we have

‖A∗u‖∗1 ≤ ‖A‖1,2 · ‖u‖2. (1.1)

Acknowledgement. The author is very thankful to F.Glineur for his constructive com-
ments on the text.

2 Model of the problem

In this paper we are interested in the following minimization problem:

Find f∗ = min
x

{f(x) : x ∈ Q1}, (2.1)

where Q1 is a bounded closed convex set in a finite-dimensional real vector space E1 and
f(x) is a continuous convex function on Q1. We do not assume f to be differentiable.

Very often, the structure of the objective function in (2.1) is known. Let us assume
that this structure can be described by the following model (see [3] for different examples):

f(x) = f̂(x) + max
u

{〈Ax, u〉2 − φ̂(u) : u ∈ Q2}, (2.2)

where function f̂(x) is continuous and convex on Q1, Q2 is a closed convex bounded set
in a finite-dimensional real vector space E2, φ̂(u) is a continuous convex function on Q2

and the linear operator A maps E1 to E∗
2 . In this case the problem (2.1) can be written

in an adjoint form:

max
u

{φ(u) : u ∈ Q2},

φ(u) = −φ̂(u) + min
x

{〈Ax, u〉2 + f̂(x) : x ∈ Q1}.
(2.3)

We assume that this representation is completely similar to (2.1) in the following sense.
The methods described in this paper are implementable only if the optimization problems
involved in the definitions of functions f(x) and φ(u) can be solved in a closed form. So,
we assume that the structure of the objects f̂ , φ̂, Q1 and Q2 is simple enough. We also
assume that the functions f̂ and φ̂ have Lipschitz-continuous gradients with Lipschitz
constants L1(f̂) and L2(φ̂) respectively. In some situations we allow these constants to
be infinitely big.

Let us show that the knowledge of structure (2.2) can help in solving problems (2.1)
and (2.3). Same as in [3], we are going to use this structure for constructing a smooth
approximation of the objective functions.

Consider a prox-function d2(u) of the set Q2. We assume that d2(u) is continuous and
strongly convex on Q2 with the convexity parameter σ2. Denote by

u0 = arg min
u

{d2(u) : u ∈ Q2}

the prox-center of the function d2(·). Without loss of generality we assume that d2(u0) = 0.
Thus, for any u ∈ Q2 we have

d2(u) ≥ 1
2σ2‖u − u0‖2

2. (2.4)
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Let µ2 be a positive smoothness parameter. Consider the following function:

fµ2(x) = f̂(x) + max
u

{〈Ax, u〉2 − φ̂(u) − µ2d2(u) : u ∈ Q2}. (2.5)

Denote by uµ2(x) the optimal solution of above problem. Since function d2(u) is strongly
convex, this solution is unique. In accordance to Theorem 1 ([3]), the gradient

∇fµ2(x) = ∇f̂(x) + A∗uµ2(x)

is Lipschitz-continuous with the constant

L1(fµ2) = L1(f̂) +
1

σ2µ2
‖A‖2

1,2.

Similarly, let us consider a prox-function d1(x) of the set Q1, which has convexity
parameter σ1 and the prox-center x0 with d1(x0) = 0. Thus, for any x ∈ Q1 we have

d1(x) ≥ 1
2σ1‖x − x0‖2

1. (2.6)

Let µ1 be a positive smoothness parameter. Consider

φµ1(u) = −φ̂(u) + min
x

{〈Ax, u〉2 + f̂(x) + µ1d1(x) : x ∈ Q1}. (2.7)

Clearly, since the second term in the above definition is a minimum of linear functions,
φµ1(u) is concave. Denote by xµ1(u) the unique optimal solution of the above problem.
In accordance to Theorem 1 ([3]), the gradient

∇φµ1(u) = −∇φ̂(u) + Axµ1(u)

is Lipschitz-continuous with the constant

L2(φµ1) = L2(φ̂) +
1

σ1µ1
‖A‖2

1,2.

3 Excessive gap condition

Note that for any x ∈ Q1 and u ∈ Q2 we have

φ(u) ≤ f(x)

However, fµ2(x) ≤ f(x) and φ(u) ≤ φµ1(u). That opens a possibility to satisfy the
following excessive gap condition:

fµ2(x̄) ≤ φµ1(ū) (3.1)

by certain x̄ ∈ Q1 and ū ∈ Q2. This inequality is the main relation we are going to main-
tain recursively in our optimization schemes. Let us justify this strategy by convergence
results.

Denote D1 = max
x

{d1(x) : x ∈ Q1} and D2 = max
u

{d2(u) : u ∈ Q2}. As we will see
later, the size of these bounds significantly affects our complexity bounds.
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Lemma 1 Let x̄ from Q1 and ū from Q2 satisfy (3.1). Then

f(x̄) − φ(ū) ≤ µ1D1 + µ2D2. (3.2)

Proof:
Indeed, for any x ∈ Q1, u ∈ Q2 we have fµ2(x) ≥ f(x)−µ2D2 and φµ1(u) ≤ φ(u)+µ1D1.
!

Thus, our goal is to maintain inequality (3.1) as µ1 and µ2 go to zero. This can be
done in two different ways, which correspond to two different auxiliary problems we must
be ready to solve at each iteration.

Before we start our analysis, let us prove one useful inequality.

Lemma 2 For any x and ȳ from Q1 we have:

f̂(x) + 〈Ax, uµ2(ȳ)〉2 − φ̂(uµ2(ȳ)) ≥ fµ2(ȳ) + 〈∇fµ2(ȳ), x − ȳ〉1. (3.3)

Proof:
Let us take arbitrary x and ȳ from Q1. Denote ū = uµ2(ȳ). Then

fµ2(ȳ) + 〈∇fµ2(ȳ), x − ȳ〉1

= f̂(ȳ) + 〈Aȳ, ū〉2 − φ̂(ū) − µ2d2(ū) + 〈∇f̂(ȳ) + A∗ū, x − ȳ〉1

≤ f̂(x) + 〈Ax, ū〉2 − φ̂(ū).
!

4 Gradient mapping

Let us justify first a possibility to launch the process. Define the primal gradient mapping:

Tµ2(x) = arg min
y

{
〈∇fµ2(x), y − x〉1 + 1

2L1(fµ2)‖y − x‖2
1 : y ∈ Q1

}
, x ∈ Q1.

Lemma 3 Let us choose an arbitrary µ2 > 0. For prox-center x0 define

x̄ = Tµ2(x0), ū = uµ2(x0). (4.1)

Then the excessive gap condition (3.1) is satisfied for any µ1 ≥ 1
σ1

L1(fµ2).

Proof:
Indeed, in view of inequality (3.3), for µ1 = 1

σ1
L1(fµ2) we get the following relations:

fµ2(Tµ2(x0)) ≤ min
x

{
fµ2(x0) + 〈∇fµ2(x0), x − x0〉1 + 1

2L1(fµ2)‖x − x0‖2
1 : x ∈ Q1

}

≤ min
x

{
f̂(x) + 〈Ax, uµ2(x0)〉2 − φ̂(uµ2(x0)) + 1

2µ1σ1‖x − x0‖2
1 : x ∈ Q1

}

≤ −φ̂(uµ2(x0)) + min
x

{
f̂(x) + 〈Ax, uµ2(x0)〉2 + µ1d1(x) : x ∈ Q1

}

≡ φµ1(uµ2(x0)). !
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Thus, the condition (3.1) can be satisfied at the first step of the algorithm. Let us
show how we can update the points x̄ and ū in order to get (3.1) for smaller values of
µ1 and µ2. Note that in view of absolute symmetry of the situation, at the first stage of
the algorithm we can try to decrease only µ1 keeping µ2 unchanged. After that, at the
second stage, we update µ2 and keep µ1. The main advantage of such a strategy is that
we need to find a justification only for the first stage. The proof for the second one will
be absolutely symmetric.

Theorem 1 Let points x̄ ∈ Q1 and ū ∈ Q2 satisfy the excessive gap condition (3.1) for
some positive µ1 and µ2. Let us fix τ ∈ (0, 1) and choose µ+

1 = (1 − τ)µ1,

x̂ = (1 − τ)x̄ + τxµ1(ū),

ū+ = (1 − τ)ū + τuµ2(x̂),

x̄+ = Tµ2(x̂).

(4.2)

Then the pair (x̄+, ū+) satisfies condition (3.1) with smoothness parameters µ+
1 and µ2

provided that τ is chosen in accordance to the following relation:

τ2

1 − τ
≤ µ1σ1

L1(fµ2)
. (4.3)

Proof:
Denote û = uµ2(x̂). In view of rules (4.2) and inequality (3.3), we have:

φµ+
1
(ū+) = min

x

{
(1 − τ)µ1d1(x) + 〈Ax, (1 − τ)ū + τ û〉2 + f̂(x) : x ∈ Q1

}
− φ̂(ū+)

≥ min
x

{
(1 − τ)

[
µ1d1(x) + 〈Ax, ū〉2 + f̂(x) − φ̂(ū)

]

+τ [f̂(x) + 〈Ax, û〉2 − φ̂(û)] : x ∈ Q1

}

≥ min
x

{
(1 − τ)

[
φµ1(ū) + 1

2µ1σ1‖x − xµ1(ū)‖2
1

]

+τ [fµ2(x̂) + 〈∇fµ2(x̂), x − x̂〉1] : x ∈ Q1} .

Note that

φµ1(ū) ≥ fµ2(x̄) ≥ fµ2(x̂) + 〈∇fµ2(x̂), x̄ − x̂〉1 = fµ2(x̂) + τ〈∇fµ2(x̂), x̄ − xµ1(ū)〉1.
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Hence, using the condition (4.3), we accomplish the proof as follows:

φµ+
1
(ū+)

≥ min
x

{
fµ2(x̂) + τ〈∇fµ2(x̂), x − xµ1(ū)〉1 + 1

2(1 − τ)µ1σ1‖x − xµ1(ū)‖2
1 : x ∈ Q1

}

≥ min
x

{
fµ2(x̂) + τ〈∇fµ2(x̂), x − xµ1(ū)〉1 + 1

2τ
2L1(fµ2)‖x − xµ1(ū)‖2

1 : x ∈ Q1

}

≥ min
x

{
fµ2(x̂) + 〈∇fµ2(x̂), x − x̂〉1 + 1

2L1(fµ2)‖x − x̂‖2
1 : x ∈ Q1

}

≥ fµ2(x̄+).

!

5 Bregman projection

Let us assume for simplicity that d1(x) is differentiable. Then for any x ∈ Q1 we have

〈∇d1(x0), x − x0〉1 ≥ 0. (5.1)

For x and z from Q1 denote by

ξ1(z, x) = d1(x) − d1(z) − 〈∇d1(z), x − z〉1

the Bregman distance between z and x. If z is fixed, then ξ(z, x) is strongly convex in x.
Moreover,

ξ1(z, x) ≥ 1
2σ1‖x − z‖2

1. (5.2)

Define the Bregman projection of some g ∈ E∗
1 onto the set Q1 as follows:

V1(z, g) = arg min
x

{〈g, x − z〉1 + ξ1(z, x) : x ∈ Q1}. (5.3)

As compared with the gradient mapping, the main advantage of the Bregman projection
is that the optimization problem in (5.3) involves the same objects as (2.7). So, we have
more chances to have it solvable in an easy way (see Section 5.3 in [3] for an example).

Let us show first how we can find the starting points of the process.

Lemma 4 Let us choose an arbitrary µ2 > 0. Denote γ = σ1
L1(fµ2 ) and set

x̄ = V1(x0, γ∇fµ2(x0)), ū = uµ2(x0). (5.4)

Then the excessive gap condition is satisfied for any µ1 ≥ 1
γ .

Proof:
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Indeed,

fµ2(x̄) ≤ fµ2(x0) + 〈∇fµ2(x0), x̄ − x0〉1 + 1
2L1(fµ2)‖x̄ − x0‖2

1

= fµ2(x0) + 1
γ

[
γ〈∇fµ2(x0), x̄ − x0〉1 + 1

2σ1‖x̄ − x0‖2
1

]

(by (5.2)) ≤ fµ2(x0) + 1
γ [〈γ∇fµ2(x0), x̄ − x0〉1 + ξ1(x0, x̄)]

= min
x

{
fµ2(x0) + 〈∇fµ2(x0), x − x0〉1 + 1

γ ξ1(x0, x) : x ∈ Q1

}

(by (5.1)) ≤ min
x

{
fµ2(x0) + 〈∇fµ2(x0), x − x0〉1 + 1

γ d1(x) : x ∈ Q1

}

(using (3.3)) ≤ min
x

{
f̂(x) + 〈Ax, uµ2(x0) − φ̂(uµ2(x0)) + 1

γ d1(x) : x ∈ Q1

}

= φ 1
γ
(uµ2(x0)) ≤ φµ1(uµ2(x0)).

!

Let us present now one iteration of this variant of the algorithm.

Theorem 2 Let points x̄ ∈ Q1 and ū ∈ Q2 satisfy the excessive gap condition (3.1) for
some positive µ1 and µ2. Let us choose τ ∈ (0, 1) in accordance with (4.3) and set

x̂ = (1 − τ)x̄ + τxµ1(ū),

ū+ = (1 − τ)ū + τuµ2(x̂),

x̃ = V1(xµ1(ū), τ
(1−τ)µ1

∇fµ2(x̂)),

x̄+ = (1 − τ)x̄ + τ x̃,

µ+
1 = (1 − τ)µ1.

(5.5)

Then the pair (x̄+, ū+) satisfies condition (3.1) with the smoothness parameters µ+
1 and

µ2.

Proof:
Denote û = uµ2(x̂). In view of the rules (5.5) and inequality (3.3), we have:

(1 − τ)µ1d1(x) + 〈Ax, (1 − τ)ū + τ û〉2 + f̂(x) − φ̂(ū+)

≥ (1 − τ)
[
µ1d1(x) + 〈Ax, ū〉2 + f̂(x) − φ̂(ū)

]
+ τ [f̂(x) + 〈Ax, û〉2 − φ̂(û)]

≥ (1 − τ)
[
µ1d1(x) + 〈Ax, ū〉2 + f̂(x) − φ̂(ū)

]

1
+ τ [fµ2(x̂) + 〈∇fµ2(x̂), x − x̂〉1]2.
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Note that for any x ∈ Q1 we have:

〈µ1∇d1(xµ1(ū)) + A∗ū + ∇f̂(xµ1(ū)), x − xµ1(ū)〉1 ≥ 0.

Therefore we can estimate the term [·]1 as follows:

[·]1 = µ1 (ξ(xµ1(ū), x) + d1(xµ1(ū)) + 〈∇d1(xµ1(ū)), x − xµ1(ū)〉1)

+〈Ax, ū〉2 + f̂(x) − φ̂(ū)

≥ µ1ξ(xµ1(ū), x) + µ1d1(xµ1(ū)) + 〈Axµ1(ū), ū〉2

+f̂(x) − 〈∇f̂(xµ1(ū)), x − xµ1(ū)〉1 − φ̂(ū)

≥ µ1ξ(xµ1(ū), x) + µ1d1(xµ1(ū)) + 〈Axµ1(ū), ū〉2 + f̂(xµ1(ū)) − φ̂(ū)

= µ1ξ(xµ1(ū), x) + φµ1(ū) ≥ µ1ξ(xµ1(ū), x) + fµ2(x̄)

≥ µ1ξ(xµ1(ū), x) + fµ2(x̂) + 〈∇fµ2(x̂), x̄ − x̂〉1.

Thus, using rules (5.5) and the relation (4.3), we can continue:

φµ+
1
(ū+) = min

x∈Q1

{
(1 − τ)µ1d1(x) + 〈Ax, (1 − τ)ū + τ û〉2 + f̂(x)

}
− φ̂(ū+)

≥ min
x∈Q1

{(1 − τ)µ1ξ(xµ1(ū), x) + fµ2(x̂) + 〈∇fµ2(x̂), (1 − τ)x̄ + τx − x̂〉1}

= min
x∈Q1

{(1 − τ)µ1ξ(xµ1(ū), x) + fµ2(x̂) + τ〈∇fµ2(x̂), x − xµ1(ū)〉1}

= (1 − τ)µ1ξ(xµ1(ū), x̃) + fµ2(x̂) + τ〈∇fµ2(x̂), x̃ − xµ1(ū)〉1

≥ 1
2(1 − τ)µ1σ1‖x̃ − xµ1(ū)‖2

1 + fµ2(x̂) + τ〈∇fµ2(x̂), x̃ − xµ1(ū)〉1

≥ 1
2τ

2L1(fµ2)‖x̃ − xµ1(ū)‖2
1 + fµ2(x̂) + τ〈∇fµ2(x̂), x̃ − xµ1(ū)〉1

= 1
2L1(fµ2)‖x̄+ − x̂‖2

1 + fµ2(x̂) + 〈∇fµ2(x̂), x̄+ − x̂〉1 ≥ fµ2(x̄+).

!

6 Convergence analysis

In Sections 4, 5 we have seen that the smoothness parameters µ1 and µ2 can be decreased
by a switching strategy. Thus, in order to convert the results of Theorems 1, 2 into an
algorithmic scheme we only need to point out a strategy for updating these parameters,
which is compatible with the condition (4.3). In this section we do that for an important
case L1(f̂) = L2(φ̂) = 0.
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It is convenient to represent the smoothness parameters as follows:

µ1 = λ1 · ‖A‖1,2 ·
√

D2

σ1σ2D1
, µ2 = λ2 · ‖A‖1,2 ·

√
D1

σ1σ2D2
. (6.1)

Then the estimate (3.2) for the duality gap becomes symmetric:

f(x̄) − φ(ū) ≤ (λ1 + λ2) · ‖A‖1,2 ·
√

D1D2

σ1σ2
. (6.2)

At the same time the condition (4.3) becomes problem independent:

τ2

1 − τ
≤ µ1µ2 ·

σ1σ2

‖A‖2
1,2

= λ1λ2. (6.3)

Let us write down the switching algorithmic scheme in an explicit form. It is convenient
to have a permanent iteration counter. In this case at even iterations we apply the primal
update (4.2) (or (5.5)), and at odd iterations we apply the corresponding dual update.
Since at even iterations λ2 is not changing, and at odd iterations λ1 is not changing, it is
convenient to put their new values in same sequence {αk}∞k=−1. Let us fix the following
relations between the sequences:

k = 2l : λ1,k = αk−1, λ2,k = αk,
k = 2l + 1 : λ1,k = αk, λ2,k = αk−1.

(6.4)

Then the parameters τk get the following sense.

Lemma 5 For all k ≥ 0 we have αk+1 = (1 − τk)αk−1.

Proof:
Indeed, in accordance to (6.4), if k = 2l then

αk+1 = λ1,k+1 = (1 − τk)λ1,k = (1 − τk)αk−1.

And if k = 2l + 1 then αk+1 = λ2,k+1 = (1 − τk)λ2,k = (1 − τk)αk−1. !

Corollary 1 In terms of the sequence {αk}∞k=−1 the condition (6.3) looks as follows:

(αk+1 − αk−1)2 ≤ αk+1αkα
2
k−1, k ≥ 0. (6.5)

Proof:
Indeed, in view of (6.4) we always have λ1,kλ2,k = αkαk−1. It remains to use τk = 1− αk+1

αk−1
.

!

Clearly, condition (6.5) is satisfied by

αk =
2

k + 2
, k ≥ −1. (6.6)
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Then
τk = 1 − αk+1

αk−1
=

2
k + 3

, k ≥ 0. (6.7)

Now we are ready to write down the algorithmic scheme. Let us do that for the gradient
mapping update (4.2). In this scheme we use the sequences {µ1,k}∞k=−1 and {µ2,k}∞k=−1,
generated in accordance to the rules (6.1), (6.4) and (6.6).

1. Initialization:
Choose x̄0 and ū0 in accordance to (4.1) with µ1 = µ1,0 and µ2 = µ2,0.

2. Iterations (k ≥ 0):

a) Set τk = 2
k+3 .

b) If k is even then generate (x̄k+1, ūk+1) from (x̄k, ūk) using (4.2).

c) If k is odd then generate (x̄k+1, ūk+1) from (x̄k, ūk) using the
symmetric dual variant of (4.2).

(6.8)

Theorem 3 Let the sequences {x̄k}∞k=0 and {ūk}∞k=0 be generated by the method (6.8).
Then each pair of points satisfy the excessive gap condition. Therefore

f(x̄k) − φ(ūk) ≤
4‖A‖1,2

k + 1

√
D1D2

σ1σ2
. (6.9)

Proof:
In accordance to our choice of parameters,

µ1,0µ2,0 = λ1,0λ2,0 ·
‖A‖2

1,2

σ1σ2
=

2µ2,0

σ1
L1(fµ2) >

µ2,0

σ1
L1(fµ2).

Hence, in view of Lemma 3 the pair (x̄0, ū0) satisfies the excessive gap condition. We
have already checked that the sequence {τk}∞k=0 defined by (6.7) satisfies the conditions
of Theorem 1. Therefore the excessive gap conditions will be valid for the sequences
generated by (6.8). It remains to use inequality (6.2). !

Clearly, the same statement is valid for the method based on the updating scheme
(5.5).

7 Minimizing a strongly convex function

Consider now the model (2.2), which satisfies the following assumption.

Assumption 1 In representation (2.2) function f̂(x) is strongly convex with convexity
parameter σ̂.
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Lemma 6 Under Assumption 1, function φ(u) defined by (2.3) is differentiable. More-
over, its gradient

∇φ(u) = −∇φ̂(u) + Ax0(u),

with x0(u) defined in (2.7), is Lipschitz-continuous with the constant

L2(φ) =
‖A‖2

1,2

σ̂
+ L2(φ̂). (7.1)

Proof:
Denote φ̃(u) = min

x
{〈Ax, u〉2 + f̂(x) : x ∈ Q1}. This function is concave as a minimum

of linear functions. Since f̂ is strongly convex, the solution of the above minimization
problem is unique. Therefore φ̃(u) is differentiable and ∇φ̃(u) = Ax0(u).

Consider two points u1 and u2. From the first-order optimality conditions in (2.3) we
have

〈A∗u1 + ∇f̂(x0(u1)), x0(u2) − x0(u1)〉1 ≥ 0,

〈A∗u2 + ∇f̂(x0(u2)), x0(u1) − x0(u2)〉1 ≥ 0.

Adding these inequalities and using strong convexity of f̂(·), we continue as follows:

〈Ax0(u2) − Ax0(u1), u1 − u2〉2 ≥ 〈∇f̂(x0(u1)) −∇f̂(x0(u2)), x0(u1) − x0(u2)〉1

≥ σ̂‖x0(u1) − x0(u2)‖2
1 ≥ σ̂

‖A‖2
1,2

(
‖∇φ̃(u1) −∇φ̃(u2)‖∗2

)2
. !

Lemma 7 For any u and û from Q2 we have:

φ(û) + 〈∇φ(û), u − û〉2 ≥ −φ̂(u) + 〈Ax0(û), u〉2 + f̂(x0(û)). (7.2)

Proof:
Let us take arbitrary u and û from Q2. Denote x̂ = x0(û). Then

φ(û) + 〈∇φ(û), u − û〉2 = −φ̂(û) + 〈Ax̂, û〉2 + f̂(x̂) + 〈−∇φ̂(û) + Ax̂, u − û〉2

≥ −φ̂(u) + 〈Ax̂, u〉2 + f̂(x̂).

!

In this section we derive an optimization scheme from the following variant of the
excessive gap condition:

fµ2(ū) ≤ φ(ū) (7.3)

for some x̄ ∈ Q1 and ū in Q2.
This condition can be seen as a variant of condition (3.1) with µ1 = 0. However, in this

section we prefer do not use the results of the previous sections since now our assumptions
are different. For example, we do not need anymore the set Q1 to be bounded.

Lemma 8 Let points x̄ from Q1 and ū from Q2 satisfy (7.3). Then

0 ≤ f(x̄) − φ(ū) ≤ µ2D2. (7.4)
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Proof:
Indeed, for any x ∈ Q1 we have fµ2(x) ≥ f(x) − µ2D2. !

Define the adjoint gradient mapping as follows:

V (u) = arg max
v

{〈∇φ(u), v − u〉2 − 1
2L2(φ)‖v − u‖2

2}. (7.5)

Lemma 9 Let us choose µ2 = 1
σ2

L2(φ). Then the excessive gap condition (7.3) is satisfied
for

ū = V (u0), x̄ = x0(u0). (7.6)

Proof:
Indeed, in view of Lemma 6 we get the following relations:

φ(V (u0)) ≥ max
u

{
φ(u0) + 〈∇φ(u0), u − u0〉2 − 1

2L2(φ)‖u − u0‖2
2 : u ∈ Q2

}

= max
u

{
−φ̂(u0) + 〈Ax0(u0), u0〉2 + f̂(x0(u0))

+〈Ax0(u0) −∇φ̂(u0), u − u0〉2 − 1
2µ2σ2‖u − u0‖2

2 : u ∈ Q2

}

≥ max
u

{
−φ̂(u) + f̂(x0(u0)) + 〈Ax0(u0), u〉2 − µ2d2(u) : u ∈ Q2

}

= fµ2(x0(u0)). !

Theorem 4 Let points x̄ ∈ Q1 and ū ∈ Q2 satisfy the excessive gap condition (7.3) for
some positive µ2. Let us fix τ ∈ (0, 1) and choose µ+

2 = (1 − τ)µ2,

û = (1 − τ)ū + τuµ2(x̄),

x̄+ = (1 − τ)x̄ + τx0(û),

ū+ = V (û).

(7.7)

Then the pair (x̄+, ū+) satisfies condition (7.3) with smoothness parameter µ+
2 , provided

that τ is chosen in accordance to the following relation:

τ2

1 − τ
≤ µ2σ2

L2(φ)
. (7.8)

Proof:
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Denote x̂ = x0(û). In view of inequality (7.2) and the rules (7.7) we have:

fµ+
2
(x̄+) = max

u

{
(1 − τ)µ2d2(u) + 〈A((1 − τ)x̄ + τ x̂), u〉2 − φ̂(u) : u ∈ Q2

}
+ f̂(x̄+)

≤ max
u

{
(1 − τ)

[
µ2d2(u) + 〈Ax̄, u〉2 − φ̂(u) + f̂(x̄)

]

+τ [−φ̂(u) + 〈Ax̂, u〉2 + f̂(x̂)] : u ∈ Q2

}

≤ max
u

{
(1 − τ)

[
fµ2(x̄) − 1

2µ2σ2‖u − uµ2(x̄)‖2
2

]

+τ [φ(û) + 〈∇φ(û), u − û〉2] : u ∈ Q2} .

Note that

fµ2(x̄) ≤ φ(ū) ≤ φ(û) + 〈∇φ(û), ū − û〉2 = φ(û) + τ〈∇φ(û), ū − uµ2(x̄)〉2.

Hence, using the condition (7.8), we can finish the proof as follows:

fµ+
2
(x̄+)

≤ max
u

{
φ(û) + τ〈∇φ(û), u − uµ2(x̄)〉2 − 1

2(1 − τ)µ2σ2‖u − uµ2(x̄)‖2
2 : u ∈ Q2

}

≤ max
u

{
φ(û) + τ〈∇φ(û), u − uµ2(x̄)〉2 − 1

2τ
2L2(φ)‖u − uµ2(x̄)‖2

2 : u ∈ Q2

}

≤ min
u

{
φ(û) + 〈∇φ(û), u − û〉2 − 1

2L2(φ)‖u − û‖2
2 : u ∈ Q2

}

≤ φ(ū+).
!

Now we can justify the following minimization scheme.

1. Initialization:
Set µ2,0 = 2L2(φ)

σ2
, x̄0 = x0(u0) and ū0 = V (u0).

2. For k ≥ 0 iterate :

Set τk = 2
k+3 and ûk = (1 − τk)ūk + τkuµ2,k(x̄k).

Update µ2,k+1 = (1 − τk)µ2,k,

x̄k+1 = (1 − τk)x̄k + τkx0(ûk),

ūk+1 = V (ûk).

(7.9)

!
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Theorem 5 Let problem (2.1) satisfies Assumption 1. Then the pairs (x̄k, ūk) generated
by scheme (7.9) satisfy the following inequality:

f(x̄k) − φ(ūk) ≤
4L2(φ)D2

(k + 1)(k + 2)σ2
, (7.10)

where L2(φ) is given by (7.1).

Proof:
Indeed, in view of Theorem 4 and Lemma 9 we need only to justify that the sequences
{µ2,k}∞k=0 and {τk}∞k=0 satisfy relation (7.8). That is straightforward because of relation

µ2,k =
4L2(φ)

(k + 1)(k + 2)σ2
,

which is valid for all k ≥ 0. !

Let us conclude the paper with an example. Consider the problem

f(x) = 1
2‖x‖

2
1 + max

1≤j≤m
[fj + 〈gj , x − xj〉1] min : x ∈ E1. (7.11)

The problems of this type arise, for example, at each iteration of Bundle Method [1]. Let
E1 = Rn and we choose

‖x‖2
1 =

n∑

i=1

(x(i))2, x ∈ E1.

Then this problem can be solved by the scheme (7.9).
Indeed, we can represent the objective function in (7.11) in the form (2.2) using the

following objects:

E2 = Rm, Q2 = ∆m = {u ∈ Rm
+ :

m∑
j=1

u(j) = 1},

f̂(x) = 1
2‖x‖

2
1, φ̂(u) = 〈b, u〉2, b(j) = 〈gj , xj〉1 − fj , j = 1, . . . , m,

AT = (a1, . . . , am).

Thus, σ̂ = 1 and L2(φ̂) = 0. Let us choose for E2 the following norm:

‖u‖2 =
m∑

j=1

|u(j)|.

Then we can use the entropy distance function (see [3]):

d2(u) = lnm +
m∑

j=1
u(j) ln u(j), u0 = ( 1

m , . . . , 1
m),

for which σ2 = 1 and D2 = lnm (see [3]). Note that in this case

‖A‖1,2 = max
1≤j≤m

‖gj‖∗1.
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Thus, method (7.9) as applied to the problem (7.11) converges with the following rate:

f(x̄k) − φ(ūk) ≤
4 lnm max

1≤j≤m
(‖gj‖∗1)

2

(k + 1)(k + 2)
.

Let us study the complexity of this scheme for our example. At each iteration we need
to compute the following objects.

1. Computation of uµ2(x̄). This is the solution of the following problem:

max
u






m∑

j=1

u(j)s(j)(x̄) − µ2d2(u) : u ∈ Q2






with s(j)(x̄) = fj + 〈gj , x̄ − xj〉, j = 1, . . . , m. In accordance to (4.14) in Lemma 4
[3], this solution can be found in a closed form:

u(j)
µ2

(x̄) =
es(j)(x̄)/µ2

m∑

l=1
es(l)(x̄)/µ2

, j = 1, . . . , m.

2. Computation of x0(û). In our case this is a solution to the problem

min
x

{〈Ax, û〉2 + 1
2‖x‖

2
1 : x ∈ E1}.

Hence, the answer is very simple: x0(û) = −AT û.
3. Computation of V (û). In our case

φ(û) = min
x∈E1

{
m∑

j=1
û(j)[fj + 〈gj , x − xj〉1] + 1

2‖x‖
2
1

}

= −〈b, û〉2 − 1
2

(
‖AT û‖∗1

)2
.

Thus, ∇φ(û) = −b−AAT û. Now we can compute V (û) by (7.5). In [3], Section 5.1,
it is shown that the complexity of such a computation is of the order O(m lnm).

Thus, we have seen that all computations at each iteration of the method (7.9) as
applied to the problem (7.11) are very cheap. The most expensive part of the iteration is
the multiplication of the matrix A by a vector. In a straightforward implementation we
need three such multiplications per iteration. However, a simple modification of the order
of operations can reduce this amount up to two.
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