The German pension system: Reforms and reform backlashes

Axel Börsch-Supan

Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy, Technical University of Munich (TUM), and NBER

Conference on Pension Reforms in Europe, Louvain-la-Neuve, 07 November 2018
1. Where does Germany stand in Europe and the world? Demographics, labor force participation, adequacy

2. Basic system set-up: the pillars and their reforms

3. First pillar (PAYG) reforms: the role of automatic stabilizers and the current great backlash

4. Reforms in occupational and private pension pillars: the role of information, transparency and default/automatic enrolment
Old-Age Dependency

Population 65+/population 20-64

40:100

80:100
Demography

BabyBoom, BustBust transition

Past low fertility and longevity

High current fertility
Pensioner per Worker

2005: 0.30
2007: 0.33
2011: 0.39
2018: 1:3
2025: 1:2
2035: 0.50
2059: 0.55
Demography is not all:

More generous, less efficient

Early retirement

More efficient, less generous

Lack of adequacy old-age poverty

Financial sustainability vs social adequacy

Source: OECD

\[R^2 = 0.49 \]
Old age labor force participation (Men 55-64)
Old-age poverty (OECD definition)

Source: OECD PAG 2017: Percentage with incomes less than 50% of median household disposable income
Net replacement rate for the median earner

Source: OECD pensions at a glance 2017

Main challenge: reform backlash
For about 3%:

Pillar 0: Means-tested base pension: € 416 + housing

For the „normal“ worker (about 85%):

Pillar 1: Public PAYG system
- Mandatory except civil servants and self-employed
- DB with adjustment for demography, point system

 € 1.396

Pillar 2: Occupational FF, DB
- Voluntary on ER side, then mandatory for EE

Pillar 3: Indiv. accounts FF, DC
- Voluntary, heavily subsidized „Riester pensions“
Switzerland: Redistribution through pensions rather than taxes
USA: Redistribution through progressive pensions
PAYG: Micro level

Pension benefits at time t for an individual i claiming benefits at age R:

$$p_{t,i,R} = s_i \cdot q_t \cdot \omega_R$$

s_i = earnings points linking the pension benefit to this individual’s earnings:

$$s_i = \sum_{i=0}^{R-1} \frac{w_i h_i}{wh}$$

q_t = basic pension value for one earnings point at time t

defines replacement rate $r_t = \bar{s} \cdot q_t / w_t$

ω_R = adjustment factor linking pension benefit to claiming age R:

$$\omega_R = 1 + (R - \bar{R})\omega \quad \omega = 3.6\%/6\% \text{ before/after } \bar{R}$$
Actuarial adjustment factors at earliest age of claiming benefits

<table>
<thead>
<tr>
<th>Country</th>
<th>Current legislation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>4.2</td>
</tr>
<tr>
<td>Germany</td>
<td>3.6</td>
</tr>
<tr>
<td>France</td>
<td>5.0</td>
</tr>
<tr>
<td>Italy</td>
<td>2.3-2.9</td>
</tr>
<tr>
<td>Spain</td>
<td>6.0-7.5</td>
</tr>
<tr>
<td>Greece</td>
<td>6.0</td>
</tr>
<tr>
<td>Sweden</td>
<td>4.1-4.7</td>
</tr>
<tr>
<td>Finland</td>
<td>4.8</td>
</tr>
<tr>
<td>US</td>
<td>6.67</td>
</tr>
</tbody>
</table>

The table shows the adjustment factors for statutory early retirement. Many countries have additional pathways not included here. Source: OECD (2013) and Queisser and Whitehouse (2006).
1. **Reforms to prevent poverty**

 Means-tested base pension 2001

2. **Reforms for the „normal“ worker**

 a. Pay-as-you-go pillar
 - Retirement age: 2007
 - Life expectancy
 - Replacement rate
 - System: 2004
 - Dependency
 - NDC

 b. Fully-funded pillars
 - Mandatory (occupational, state)
 - Voluntary (individual): 2001
 - „Nudging“
1. Determination of either the replacement rate in a DB system or the contribution rate in a DC system:

- **DB system:** Fixed replacement rate r_0 such that $p_t = r_0 \cdot w_t = q_0 \cdot \bar{s}$
 $$\tau_t = r_0 \cdot NP_t / NW_t.$$

- **DC system:** Fixed contribution rate τ_0 for a cohort of workers.
 $$r_t = \tau_0 \cdot NW_t / NP_t$$

- **Hybrid DB/DC system:**
 $$p_t / p_{t-1} = w_t / w_{t-1} \cdot (DR_{t-1}/DR_t)^\alpha,$$
 with $DR_t = NP_t / NW_t$ dependency ratio and $0 \leq \alpha \leq 1$

2. PAYG budget equation
 $$\tau_t \cdot w_t \cdot NW_t = p_t \cdot NP_t$$
Bis 2030: Rentenversicherungsbericht 2015.
Ab 2030: Max-Planck-Institut für Sozialrecht und Sozialpolitik (2016)
Reform backlash: „Haltelinie“

Contribution rate (left) vs. Replacement rate (right)

- Contribution rate (left) decreases from 20% in 2012 to around 21% in 2022, then stabilizes around 23%.
- Replacement rate (right) starts at 48% in 2022 and increases slightly over the years, reaching just above 49% in 2060.
Tax costs of the “Haltelinien”

Federal budget 2018: € \textbf{333.5} bn, of this already now € \textbf{90} bn for pensions

Börsch-Supan et al. May 2018
Statutory eligibility age
3:2:1 adjustment to life expectancy

3:2:1 rule: for 3 years higher/lower life expectancy increase/decrease eligibility age by 2 years and add 1 year to retirement

Main challenge: reform backlash: „Rente mit 63“
Stabilizing the replacement rate

- Referenzszenario
- Koppelung an LE
- Anpassung Definition Standardrentner
- Koppelung an LE + Anp. Standardrentner

Börsch-Supan et al.
May 2018
1. Prevent poverty

Means-tested base pension

2. Reforms for the „normal“ worker

a. Pay-as-you-go pillar

<table>
<thead>
<tr>
<th>Retirement age</th>
<th>Replacement rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life expectancy</td>
<td>System dependency</td>
</tr>
</tbody>
</table>

NDC

b. Fully-funded pillars

<table>
<thead>
<tr>
<th>Mandatory (occupational, state)</th>
<th>Voluntary (individual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Nudging“</td>
<td></td>
</tr>
</tbody>
</table>

Flags of countries: UK, France, Italy, Spain, Switzerland, Australia, Sweden, Germany.
Subsidy as percent of total (!) contribution

Note: Direct subsidy/the tax advantage as a percentage of savings in form of the new supplementary pensions.
Source: Deutsche Bundesbank (2002).
Households with:

- **Riester pension**
- **Occupational pension**
- **Other individual accounts**

Source: Börsch-Supan et al 2015
Are you eligible for a government subsidy?

<table>
<thead>
<tr>
<th>Income quintile</th>
<th>Law (percentage)</th>
<th>Own assessment (percentage)</th>
<th>Diff (percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.54</td>
<td>62.15</td>
<td>34.61</td>
</tr>
<tr>
<td>2</td>
<td>28.38</td>
<td>50.76</td>
<td>22.38</td>
</tr>
<tr>
<td>3</td>
<td>29.73</td>
<td>47.78</td>
<td>18.05</td>
</tr>
<tr>
<td>4</td>
<td>22.4</td>
<td>41.47</td>
<td>19.43</td>
</tr>
<tr>
<td>5</td>
<td>21.35</td>
<td>41.89</td>
<td>20.54</td>
</tr>
<tr>
<td>Total</td>
<td>26.27</td>
<td>50.58</td>
<td>24.31</td>
</tr>
</tbody>
</table>

Source: Coppola and Lamla 2013
Huge variation in administrative costs

Administrative costs (basis points, rate of return reduction)

Number of contract

Börsch-Supan/Gasche
MEA-DP 2013
D. Pension funds’ asset allocation for selected investment categories, 2013

- Equities
- Bills and bonds
- Cash and deposits
- Other

% of total

USA, AUS, BEL, CAN, GBR, ITA, JPN, ESP, ISR, GRC, DEU, SVK, CZE, KOR
Germany’s ageing challenges are large
- Old-age dependency almost as large as Mediterranean countries/Japan
- Additional funding too late for the baby boomers

Many good reform ideas in “Agenda 2010”
- Political challenges of the sustainability vs. adequacy debate
- Sustainability factor: Index benefits to dependency ratio
- Basic pension, limits to dampen anxiety
- [Automatic] adjustment of retirement age to life expectancy

But serious backlash: New eligibility age 63, new “Haltelinien”

Voluntary second and third pillar took up but still serious problems
- Wide-spread lack of information: employees and employers
- Markets failed to weed out costly pension plans