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Abstract This article presents an analysis of the behav-
iour of countries defining their climate policies in an
uncertain context. The analysis is made using the
S-CWS model, a stochastic version of an integrated
assessment growth model. The model includes a sto-
chastic definition of the climate sensitivity parameter.
We show that the impact of uncertainty on policy
design critically depends on the shape of the damage
function. We also examine the benefits of cooperation
in the context of uncertainty: We highlight the existence
of an additional benefit of cooperation, namely risk
reduction.
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1 Introduction

There exist huge uncertainties surrounding the magni-
tude and the speed of climate change. How such un-
certainties shape climate policies is the main question
addressed in this paper.
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The recent literature in economic theory has high-
lighted the consequences for climate policy of the un-
certainties concerning the severity of climate change.
Gollier [21] has pointed out that a prudent society
should discount the future at a lower rate when it faces
uncertainty. This means that a larger investment to
prevent future losses (like climate damages) is socially
desirable. The finding was discussed and confirmed
by several later contributions (e.g. [2, 17]). Weitzman
[40] even suggested that if the distribution of damages
exhibits a ‘fat-tail’, policy recommendations may be
radically altered. In the expected utility framework,
this induces (infinitely) negative discount rates urg-
ing prompt action to avoid climate change (see also
[2, 17]). Despite these theoretical results, the impact
of uncertainty on climate policy design has hardly been
studied in integrated assessment models (IAMs). These
models combine scientific and socioeconomic aspects
of climate change to assess climate change policies.
Several of such models use optimal economic growth
modelling, in line with the original model of Ramsey
[29], for instance DICE [25], MERGE [23], OMEGA
[19], PAGE [33], WITCH [10], DEMETER [38] or
CWS [13, 15, 36].

Most of the uncertainty analyses carried out have
taken the form of sensitivity analysis, in particular
Monte Carlo analyses (see, e.g. [28, 33]). The aim was
to obtain probability ranges for temperature increase
or damages. But such analyses suppose that policy is
designed after the uncertainty is resolved. By contrast,
it is of interest to study how dealing with uncertainty
reshapes policies and changes incentives to cooperate
in an expected utility framework similar to the one
used in the theoretical contribution by Gollier [21]
and Weitzman [40]. To the best of our knowledge, the
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only contribution of this kind is the one by Nordhaus
and Popp [26]. Still, these authors focus on the value
of information rather than on the design of climate
policies. The second question addressed in this paper
is to assess to what extent cooperation can contribute
to the protection against high climate damages. It is
well-known that cooperation is welfare improving at
the global level, but does it allow a reduction of risk?
If it is the case, then it means that cooperation brings
out a side benefit.1

In the present article, we propose to model decision
making under uncertainty in an IAM: the ClimNeg
world simulation (CWS) model. To do so, the CWS
model had to be adapted to deal with uncertainty.
There exist several techniques to do so, and they
can be split into two categories: anticipative and non-
anticipative. The first category assumes that the de-
cision makers have perfect knowledge. The second
category assumes that the decision makers take the
decisions that are best adapted to different possible
realizations of uncertainty. Sensitivity analyses fall in
the first category. In this paper, we deal with the second
category of techniques, which encompasses stochastic
programming [9], dynamic programming [6] or more
recent techniques such as robust optimization [8] or
programming techniques using affine or step decision
rules [7, 35].

The usual growth models à la Ramsey are written in a
programming or algebraic modelling language as linear
programming problems.2 Linear programming is a very
powerful optimization technique that can easily handle
uncertain components. One can easily define the deter-
ministic equivalent of a stochastic problem, especially
if this problem is a linear programming problem. This
step can even be automatized, as in [34].

Stochastic programming is the technique we have
chosen to handle uncertain components in the CWS
model, but other tools have already been used in the
field. The use of stochastic modelling in IAMs has been
proposed by [1] with a model derived from DICE in
which the uncertain parameter is revealed at a given
time period and discretized in three values. In [42], the
authors use stochastic differential equations and meta-
modelling. In [4], an optimal timing of climate policies
is found using dynamic programming to represent a
two-step process (revelation of the true climate sensi-
tivity value and availability of a backstop technology)
in which the order of the steps is not known in advance.

1Here we do not raise the issue of countries’ incentive for coop-
eration. For such an analysis, see, e.g. [13].
2The objective function is linear if the agent is risk neutral, but
the constraints are always linear in the decision variables.

Stochastic programming technique has been used in
only one model, WITCH, where the efficiency of the
clean technology [11] or the CO2 concentration target
in 2100 [12] could be defined as uncertain and resolved
during the horizon at a given time period.3

In this paper, we shall present a stochastic version of
the CWS model, called S-CWS. This version deals with
a larger number of values for the uncertain parameter
than what has been already done in similar models,
such as WITCH. This better discretization will provide
optimal climate policies that are more robust. This
is the methodological contribution of the paper. The
uncertain parameter will be the climate sensitivity, and
the countries will look for a unique policy to cope with
the different possible values of the uncertain parame-
ter. As for economic analysis, our objective is twofold.
First, we study how uncertainty alters the chosen course
of action. Second, we highlight the consequences of
uncertainty on the benefits from climate international
cooperation. The idea is to test to what extent countries
may be able to cope with uncertainty more efficiently
under an international cooperation regime than alone.

The paper is organized as follows: In the next section,
we provide the theoretical background about policy
design under uncertainty. In Section 3, we describe the
stochastic version of the CWS model. In Section 4,
we discuss some findings obtained with the simula-
tion model. In Section 5, we provide some conclusive
remarks.

2 Policy Design Under Uncertainty

2.1 Choice Under Uncertainty

The economic theory has built a well-accepted frame-
work to model how choices should be made under
uncertainty: the expected utility model.4 The model was
initially developed by von Neumann and Morgenstern
[39]. It is based on the idea that decision makers seek
to maximize the expected value of their utility.

Assume for instance that uncertainty is repre-
sented by S possible states of nature, denoted
{1, . . . , s, . . . , S}, which occur with respective probabili-
ties (p1, . . . , ps, . . . , pS). Let xs be the payoff obtained

3The parameter value is discretized in three values.
4Recently, the expected utility model has been challenged in
the context of uncertainty, and several alternatives have been
proposed to represent ambiguity aversion and probabilities mis-
perceptions. For the role of these models in the case of climate
change, see for instance [5, 16, 32]. However, the expected utility
model is a useful benchmark which has hardly been studied in
IAMs. It is natural to take this approach as a starting point.
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if the state of the world s realizes. The decision maker
maximizes

∑
s psu(xs). When the function u is con-

cave, the decision maker is said to be risk-averse: She
dislikes risk.

In this paper, we introduce the expected utility
methodology in a multi-country integrated assessment
model of climate change. The payoff xi,s for a country
i ∈ {1, . . . N} in state of the world s is the discounted
sum of total present and future consumption, xi,s =
∑T

t=1
Zi,t,s

(1+ρ)t−1 , where Zi,t,s is total consumption in coun-
try i in period t and state of the world s and ρ is the
discount rate. We assume that consumption cannot be
known with certainty, so that Zi,t,s must be indexed
by the state of the world, s. Every country i therefore
chooses the course of action that maximizes

Wi = u−1

(
∑

s

psu

(
T∑

t=1

Zi,t,s

(1 + ρ)t−1

))

. (1)

A distinctive feature of the objective function Wi is
that we take a transform u−1 of the expected utility.
This means that we take what is called the ‘certainty
equivalent’ of the expected utility, that is, the utility
a country would reach in the absence of uncertainty.
The reason for this modelling choice is that we want
to have some coherence between our stochastic results
and those obtained in the usual deterministic case, so
that we are able to easily compare our results. Note
indeed that if we were sure of the state of the world
s, we would take ps = 1 and ps′ = 0 for all s′ �= s, so
that the above objective function would become Wi =∑T

t=1
Zi,t

(1+ρ)t−1 .5 This is precisely the objective function
used in the deterministic version of the CWS model
[15, 36].

We assume that the function u(.) in the above ex-
pression has the form

u(x) = x1−η

1 − η
,

where η > 0 is the coefficient of relative risk aversion.
A higher η means that the society is more averse to risk:
It is willing to pay more to avoid a risk. Throughout
the paper, we will take η = 2, which is a quite standard
value in the literature (see [3, 20] for instance).

2.2 Implications for Climate Change Policies

A key feature of the expected utility model is that wel-
fare can be decomposed in two elements: the expected

5In contrast, not taking the transform u−1 would yield the ob-

jective function Wi = u
(∑T

t=1
Zi,t,s

(1+ρ)t−1

)
in the deterministic case,

which looks quite unusual.

payoff and the amount of risk a decision maker bears.
There is a potential trade-off between these two dimen-
sions: In order to obtain a sure outcome, the decision
maker is ready to give up some of her expected payoff.
The amount she is ready to give up precisely measures
her risk aversion. It is called the risk premium. It is
of interest to determine whether a policy can improve
welfare in one of the two dimensions (expected payoff
and risk premium) or both.

In the context of climate change, countries must take
decisions under large uncertainties about the dynamics
of the climatic system. We assume that uncertainty
is never resolved. By assuming that countries do not
adapt their plan to observed shocks, we implicitly con-
sider that there are other (unmodelled) forms of un-
certainties affecting the economy so that policy makers
are unable to appropriately update their beliefs.6 In
this context, the objective for a country is to find the
policy that, if applied in all possible states of the world,
will maximize her expected utility. This means that
the policy must maximize the expected payoff without
increasing uncertainty too much.

When there are uncertainties about how the climate
reacts to greenhouse gases (GHG) concentrations, in-
troducing risk aversion may provide an additional ra-
tionale for emission reduction. Indeed, if climate un-
certainty keeps the expected damage constant while
increasing risk, countries are ready to abate more to
avoid the risk. One issue though is that the uncertainty
about the climatic model does not translate directly into
an uncertainty about the payoff. In particular, the dam-
ages corresponding to the expected parameters values
of the climatic model are not necessarily the expected
damages taking into account all possible values of this
parameter.

We hence cannot predict unambiguously whether
the policy using ‘best guess’ estimates of the parameters
will be more or less restrictive than the policy arising
from maximizing the expected utility. We shall indeed
see in Section 4.1 that the damage corresponding to the
expected parameter value of the climatic model may
be higher than the expected damages, yielding more
abatement and less emissions. If the climate uncertainty
would not affect the expected damages, the opposite
would be true because of risk aversion.

In a strategic framework, introducing uncertainty
also has an impact on potential climate agreements.
Indeed, cooperation is efficient in reducing uncertainty.
Cooperation will both imply an efficient sharing of

6For a modelling of climate change policies with update of beliefs,
see [11, 12], or [14] for decision patterns using ‘model predictive
control’.
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emissions to limit the expected climate change impacts
and an efficient risk sharing between the regions. One
of our objectives is to study the impact of the additional
gain from cooperation, namely risk reduction.

3 Dealing with Uncertainty by Using Stochastic
Optimization

In order to design an appropriate climate policy to face
climate sensitivity uncertainty, we apply a technique of
optimization under uncertainty to extend the ClimNeg
world simulation model. This stochastic version is la-
belled S-CWS. In this section, we shall present the
introduction of uncertainty in the climate sensitivity
parameter. Then, we shall explain how the CWS model
has been adapted for stochastic computation.

3.1 Uncertainty About Climate Sensitivity

Climate sensitivity is a parameter in climate science
surrounded by huge uncertainties. Climate sensitivity
measures how much global warming can be expected in
equilibrium after a doubling of GHGs concentration in
the atmosphere. The Fourth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC;
[27]) compiled 18 recent studies about the distribution
of the climate sensitivity parameters. Most studies high-
light that there exist large uncertainties about this para-
meter: This uncertainty seems inherently very difficult
to reduce. In particular, the possibility of high values
of the climate sensitivity parameter cannot be ruled
out ([27], Chap. 10, pp. 798–799). There is little hope
that the precise value can be learned with sufficient
accuracy in the near future because small uncertainties
about various feedback mechanisms translate into large
uncertainties in climate sensitivity [30].

Many estimates of this parameter lie in the region
around 4, which means a four-degree expected increase
in the average earth surface temperature for a doubling
in GHG concentration in the long term. Most climate
models generate an asymmetric distribution around
this value. As explained by Roe and Baker [30], a distri-
bution with a fat tail is a natural outcome of uncertainty
about the various feedback processes whereby higher
temperatures raise the level of radiative forcing. It is
natural to portray the uncertainty about such feedbacks
as uncertainty about climate sensitivity. This route is
also suggested by Weitzman [40].

We generate the distribution of the climate sensi-
tivity parameter following the same reduced-form ap-
proach as in [30]. In their notation, we set f = 0.77 and
σ f = 0.189 ( f and σ f are, respectively, the mean and
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Fig. 1 Probability density function for climate sensitivity (x-axis)
built from Roe and Baker [30]

the standard deviation of the distribution of the total
feedback factor). We obtain a probability distribution
function (pdf) similar in shape to the one reported in
[31]. The mean and median of this theoretical distrib-
ution are 4.16 and 3.81, respectively. Figure 1 plots the
pdf used in our simulations.7

3.2 A Stochastic Version of the CWS Model

The stochastic version of the CWS model (S-CWS)
consists in an integrated assessment model of climate
change and optimal growth, adapted for coalitional
analysis from [25]. It encompasses economic, climatic
and impact dimensions in a worldwide intertemporal
setting. As a Ramsey-type model (see [29]), economic
growth is driven by population growth, technological
change and capital accumulation. The time dimension
is discrete, indexed by t, finite, but very long.8

The world is split into 18 countries9 (for the list, see
Table 4 in “Appendix”). In each country i = 1, . . . n,
gross output Yi,t is given by a Cobb–Douglas produc-
tion function combining capital and labour. Population
change is exogenous. Capital accumulation results from
an endogenous gross investment Ii,t reduced by exoge-
nous scrapping. Technical progress is Hicks neutral.
Carbon emissions stem from global output with an
emission coefficient which can be reduced by national

7Many other pdf are available in the literature review carried
out by the IPCC report [27], for instance [18, 22, 24]. We have
performed some sensitivity analysis, which showed that our nu-
merical results are robust to the choice of the pdf.
8Specifically, the simulation horizon is 2330.
9For short, we use the term country to denote the re-
gions/countries of the S-CWS model.
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policies, σ̃i,t = (1 − μi,t)σi,t, where μi,t ∈ [0, 1] stands for
the carbon abatement rate and σi,t is the exogenous
carbon intensity of the economy. Abatement costs are
given by an increasing and convex cost function Ci(μi,t).

GHG concentration, through a simplified carbon cy-
cle, yields a global mean temperature expressed as tem-
perature change with respect to the pre-industrial level,
TE

t . A key equation of the climatic model is the one
which describes the dynamics of temperature.10 This
is the equation where the uncertain climate sensitivity
parameter T2Xs enters, so that temperature increase
depends on the state of the world s:

T E
t+1,s = T E

t,s

1 + c1

(
F2X
T2Xs

)
+ c1c3

+ c1
(
Ft+1 + c3TL

t,s

)
,

where F2X, Ft+1 and TL
t,s stand for carbon forcing, ra-

diative forcing and temperature change in lower ocean,
respectively. It is possible to show that the relationship
between TE

t+1,s and T2Xs is concave for T2Xs ≥ 1.
Starting from the climate module of the model, the

uncertainty is transmitted into the countries’ payoffs
through the damage functions:

Di
(
T E

t,s

) = Yi,t

[
θi,1T E

t,s + θi,2
(
T E

t,s

)θ3
]
. (2)

The damage functions are increasing and convex
in temperature change.11 Finally, consumption Zi,t,s is
given by the gross output minus investment, abatement
costs and damage costs:

Zi,t,s = Yi,t − Ii,t − Ci(μi,t) − Di
(
TE

t,s

)
.

As a result, countries’ payoffs are stochastic.
This economic model is converted into a 18-player

game by letting the countries be the players, whose
strategies are the decision variables Ii,t and μi,t over
the entire period 2000–2300. The S-CWS model is used
to determine paths of investment (Ii,t) and emissions
(through μi,t) in the face of uncertainty. Stated other-
wise, the aim is to find paths of policy instruments that,
if applied in any realization of the uncertain parameter,
would maximize an objective function. The value of the
objective function of a country-player i is defined as
follows:

Wi = u−1

(∫

u
( T∑

t=0

Zit(ξ̃ )

(1 + ρ)t−1

)

dD(ξ̃ )

)

, (3)

10For the list of variables and the complete description of the
model, see the “Appendix”.
11Values for those polynomials have been updated from the
DICE-2010 model.

where u(x) = x1−η

1−η
is the utility function, with η the

degree of risk aversion and ρ the discount rate. This
objective function is to be maximized according to the
decision variables, where ξ̃ is a continuous random
variable of probability function D defined on a given
probability space. Let us approximate the continuous
variable ξ̃ by a discrete one denoted by ξ . We are
now able to define the objective function of the deter-
ministic equivalent of the stochastic objective 3, which
is nothing more than Eq. 1, where we assumed that
the states of the world ξs were known and countable
(s = 1, . . . S).

The players–countries’ strategies are specified ac-
cording to two alternative scenarios. First is the Nash
equilibrium scenario, which is the joint outcome of each
country maximizing its welfare taking the actions of
the others as given.12 Second is the Cooperative sce-
nario where all countries act jointly so as to maximize
the world welfare. This scenario is Pareto efficient.13

The two scenarios are formally defined as follows (the
constraints 5–16 of the model can be found in the
“Appendix”):

• Cooperative scenario (COOP):(
μCOOP

i,t , ICOOP
i,t

)
i=1,...N
t=0,...T

that solves:

Max W = ∑
i Wi, subject to Eqs. 5–16.

• Nash equilibrium scenario (NASH):(
μNASH

i,t , INASH
i,t

)
i=1,...N
t=0,...T

that solves, for each i =
1, . . . N:
Max Wi, subject to Eqs. 5–16, with E j,t =
ENASH

j,t , ∀ j �= i, t = 0, . . . T.

Solving a problem for S = 1 boils down to assuming
that the value of the variable ξ (which is a parameter
in this case) is known beforehand. So this is a pure
deterministic framework. Such a solution is also named
See and Act in [26, 41]. Solving a problem with S > 1
boils down to assume that uncertainty is not resolved
until the last period. As explained in Section 2.2,
we indeed assume that our problem has no recourse,

12In the terminology of dynamic noncooperative games, this is
an open loop Nash equilibrium. Closed loop or feedback Nash
equilibria have also been introduced in dynamic core-stability
analysis in [37], albeit with a simpler model.
13A third kind of scenario can also be computed, namely the
partial agreement Nash equilibria with respect to a coalition sce-
narios (PANEs). Each PANE is the outcome of a subset of
countries maximizing jointly their welfare, while the others act
individually (there are as many such scenarios considered as there
are coalitions). See [15, 36] for applications with PANEs.
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so that the sequence of the process is the following:
(a) decisions are taken and then (b) after the last period
uncertainty is resolved. The solution is named Act and
See in [26].

The larger S, the better the numerical approxima-
tion. However, enlarging S increases the size of the
computation problem: Stochastic programming suffers
from the curse of dimensionality [6]. If the deterministic
problem is already a large dimensional problem, then it
is almost impossible to stochastize it. The CWS model is
a rather small-scale model, so we were rather confident
being able to define a problem with a larger S than
what has been done in the literature, i.e. S greater than
3.14 Indeed, the S-CWS model includes a description of
the climate sensitivity parameter in seven values, which
is the maximum number manageable with the current
version of the GAMS-CONOPT software.

Nevertheless, even if S is large, there still exists a
discrepancy between the approximated (discrete) dis-
tribution and the real (continuous) one. This is why it
is important to validate the results of the optimization
(or prediction phase) in what we shall call a validation
phase.15

We define two distinct sets of possible outcomes of
the random variable ξ : (a) a large set V for validation
set which is supposed to be the real distribution (or
a very close approximation) and (b) a smaller set C
for computation set (or optimization set) that can be
included in V .16 In practice, the sets could be defined
by a Monte Carlo random draw. The output of the
optimization phase consists in a set of optimal values
I∗

i,t and μ∗
i,t for the decision variables and the associated

value W∗ of the objective function W = ∑
i Wi at the

optimum. We call this value prediction. The value W∗
is of limited interest because it is computed on the
basis of a small set, C. To validate the optimal policy
found, we propose to compute17 a more robust value,
that is, the mean of the objective function if we apply
the optimal policy on a large set V of outcomes of the

14The CWS model has been initially developed for coalition
analyses that need a huge number of model runs. The limited
size of the generated problem was then a main constraint. In
that sense, CWS is different from other growth models such
as WITCH or DICE that are more detailed, but also less
manageable.
15This phase could also be used to contrast several approaches,
for instance models with different values of S.
16In a multistage context, the computation set should be aggre-
gated in a tree to be exploited by the model.
17There is no optimization, only computation using the optimal
policy found.

Table 1 Computation set:
value and probability of
elements

s T2Xs ps

1 1.7625000 0.03101
2 2.5062400 0.23156
3 3.4310000 0.26034
4 4.4188400 0.18879
5 5.4189100 0.12881
6 6.4214700 0.0896
7 7.4690200 0.06989

random variable.18 This mean value is denoted by WV

and is the result of the validation phase:

WV =
SV∑

i=1

piW(μ∗, I∗, ξi) (4)

Based on the probability distribution presented in
Section 3.1, the computation set C, with SC = 7, is as
defined in Table 1. The validation set V is defined on
the same basis but with a larger cardinality, SV = 71.
The values for T2Xs range from 1.0 to 8.0 with a step
of 0.1. The associated probabilities are presented in the
“Appendix” in Table 13.

4 Computation Results

4.1 How Risk Aversion Shapes Climate Policies

The first set of results will show how the policies carried
out in the NASH and COOP scenarios change when
policy makers are risk averse. In other words, we shall
compare the value of the policy instruments under the
NASH and COOP scenarios when policy makers are
risk averse with the ones in the deterministic case.
Table 2 displays all figures in difference with respect to
the deterministic case. They are shown for two values
of the exponent θ3 of the damage function (see Eq. 2
above), and the rationale for this will appear soon.

Let us start with the benchmark case where the dam-
age parameter θ3 is 2.0.19 What Table 2 shows is that the
average abatement rate μi is lower, whatever the sce-
nario. As a result, GHG emissions are higher (+0.40%
in NASH and +0.05% in COOP) and cumulated dam-
ages larger in both scenarios (+0.05% in NASH and

18Empirically, it is well-known that the result of stochastic pro-
gramming optimization, or prediction value, is very optimistic
and, in a sense, not realistic and that the policy found is very
sensitive, not robust.
19θ3 = 2.0 is the benchmark value in the CWS model as well as in
many IAMs.
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Table 2 Differences between
stochastic and deterministic
policies (expressed w.r.t.
deterministic policy)

Damage parameter Damage parameter
θ3 = 2.0 θ3 = 2.7

NASH COOP NASH COOP

Abatement rate (in 2200, in point of %) −0.02 −0.18 0.70 0.65
GHG emission level (in 2200) 0.40% 0.05% −1.75% −3.18%
Damages (cumulated, discounted) 0.05% 0.37% −1.79% −2.86%
Consumption (cumulated, discounted) 0.00% 0.00% 0.09% 0.00%
Temperature (in 2200, in ◦C) 0.00 0.01 −0.03 −0.04
Welfare 0.00% 0.00% 0.09% 0.00%

+0.37% in COOP). In the meantime, global output is
enhanced, so that cumulated discounted consumption
is left unchanged. Surprisingly, welfare remains almost
unchanged when risk is taken into account. This is due
to the almost unchanged level of expected consumption
combined with a very small effect of risk (small risk
premia). To sum up, the two striking results coming
out from the first two columns of Table 2 are that (a)
the world emission level is higher and (b) positive and
negative effects cancel out, so that global welfare is
unchanged.

Such a result was rather unexpected. What would
have been naturally expected is a lower emission level
and a gain in welfare under risk aversion. To under-
stand this counter-intuitive result, we need to compute
a sensitivity analysis. This sensitivity analysis consists
in setting the exponent parameter of the damage func-
tions θ3 to 2.7 in all countries (instead of 2.0). In
this case, the results look quite different, as shown in
Table 2. Now, GHG emissions are lower under risk

Fig. 2 Relation between climate sensitivity (x-axis) and cumu-
lated discounted damages (y-axis) under NASH for three dam-
age parameters: θ3 =1.5 (dashed line), θ3 =2.0 (dotted line) and
θ3 =2.7 (solid line)

aversion (−1.75% in NASH and −3.18% in COOP,
in 2200) because of much stronger abatement rates.
This leads to a smaller temperature increase and dam-
ages reduced by 1.79% and 2.86%, respectively. These
results are now in line with the intuition: When policy
makers are risk averse, abatement efforts are much
stronger and, as a result, climate change is curbed.

The rationale for this unexpected outcome was ac-
tually provided in Section 2.2. Indeed, the uncertainty
about the climate sensitivity parameter does not readily
translate into damages. In particular, damages at the
expected value of the climate sensitivity parameter are
larger than expected damages. This comes from the fact
that, in a more complex model as S-CWS, the relation-
ship between the climate sensitivity and the damages
can be non-linear, as illustrated in Fig. 2. The shape of
the relationship depends on the interplay between two
features. On the one hand, the stronger the convexity
of the damage function, the stronger the incentive for
risk averse policy makers to avoid a too large temper-
ature increase and thus their incentive to curb GHG
emissions. But, on the other hand, the impact of larger
GHG emissions on temperature increase depends on
the radiative forcing of emissions, and this radiative
forcing has a concave shape. So the combination of
these two effects (i.e. the link between global emissions
and damages) may well be either concave or convex.
If it is convex, then the intuition applies, namely that
abatement efforts will be stronger under risk aversion.
But if it is concave, then the contrary applies.20 The
S-CWS model reveals that the former comes out when
θ3 = 2.0 and the latter when θ3 = 2.7.

Let us remark that the potential existence of a
concave relationship between climate sensitivity and

20Indeed, if the relationship between global emissions and dam-
ages is convex, we know by Jensen’s inequality that damages
from expected emissions are lower than expected damages from
emissions. Therefore, there are additional incentives to reduce
emissions when risk is explicitly taken into account. The opposite
is true when the relation is concave.
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Table 3 Differences between COOP and NASH (expressed
w.r.t. NASH)

Damage Damage
parameter parameter
θ3 = 2.0 θ3 = 2.7

Abatement rate 16.85 31.87
(in 2200, in point of %)

GHG emission level (in 2200) −27.99% −60.85%
Damages (cumulated, discounted) −24.66% −62.57%
Consumption 0.35% 2.71%

(cumulated, discounted)
Temperature (in 2200, in ◦C) −0.81 −1.78
Welfare 0.35% 2.71%

temperature contrasts with the analysis of Weitzman
[40]. This comes from the fact that Weitzman considers
a simplified model where the climate dynamics is at
a stationary equilibrium, so that temperature increase
(from doubling GHG concentration) is exactly the
value of the climate sensitivity parameter. Our dynamic
analysis suggests that taking into account climate dy-
namics is likely to question the mechanism highlighted
by Weitzman.

4.2 The Benefits of Cooperation

The benefits of cooperation in the case of climate
change are well established in the literature. They have
been illustrated with the deterministic version of the
CWS model in [15] and [36]. The purpose of this section
is to ask whether side benefits can be expected from co-
operation when policy makers are risk averse. We have
learnt from the previous section that a key element in
the analysis is the convex/concave relationship between
climate sensitivity and damages. So we shall perform

our analysis again for two values of the parameter θ3,
2.0 and 2.7. The results are displayed in Table 3.

It first appears from Table 3 that cooperation has a
strong impact on global GHG emissions: They are re-
duced (in 2200) by 27.9% when θ3 = 2.0 and by 60.8%
when θ3 = 2.7, with respect to NASH. Global welfare is
thus increased by 0.35% and 2.71%, respectively.

Figure 3 displays the density curves (or pdf) of the
global temperature increase in the two scenarios and
for the two values of the damage parameter. It clearly
appears that the distribution shifts left under COOP,
but one can also see that the shape is changed: Coop-
eration shrinks the range of the density curve. In other
words, the world becomes able to prevent itself from
too high temperature increases. The probability range
at 90% is reduced roughly by one third. While (with
θ3 = 2.7) there exists a 90% chance for the temperature
increase to lie between +2.9◦C and +7.1◦C in 2200 for
NASH, this range becomes +2.0◦C and +4.7◦C under
COOP. The mean value drops from +5.1◦C to +3.3◦C.
How does this shift of the density curves in temper-
ature affect the economy? We have seen in Table 3
that consumption is increased and so does welfare in
the COOP scenario. This shows that some of these
beneficial effects come from a more efficient manage-
ment of the uncertainty related to climate damages.

The density curves for global damages are displayed
in Fig. 4. The figure shows how risk aversion reshapes
the density curve of damages. It appears that coop-
eration is effective at shrinking the uncertainty range
related to damages. In other words, under cooperation
there is a high probability for the world to avoid dra-
matic climate damages. So an important benefit from
cooperation, in addition to the reduction of expected
damages, is to narrow the uncertainty range.

Fig. 3 Empirical density curves of temperature increase in 2200 (x-axis) under NASH (dotted line) and COOP (solid line) for θ3 = 2.0
(left) and θ3 = 2.7 (right)
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Fig. 4 Empirical density curves of climate damages in 2200 (x-axis) under NASH (dotted line) and COOP (solid line) for θ3 = 2.0 (left)
and θ3 = 2.7 (right)

Fig. 5 Damages in 2200 for
COOP (unf illed) and NASH
(filled), in percent of GDP,
with θ3 = 2.7; the bar stands
for 90 pc.; the dot is the mean
value (for country label, see
Table 4 in “Appendix”)

Fig. 6 Damages in 2200 for
COOP (unf illed) and NASH
(filled), in percent of GDP,
with θ3 = 2.0; the bar stands
for 90 pc.; the dot is the mean
value (for country label, see
Table 4 in “Appendix”)
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Figure 5 shows how damages at a probability range
of 90% change between NASH and COOP at the coun-
try level, as expressed in percent of GDP, for θ3 = 2.7.
At the world level (see the last bar on the right side
of the figure), the expected damage goes from 10%
under NASH to less than 3% of GDP under COOP.
But the impact of cooperation on the probability range
of damages is also striking. Under NASH, there is 90%
chance for damages to lie between 3% and 28% of
GDP in 2200. Under COOP, this 90% interval ranges
between 1% and 9% of GDP. Put differently (and
using the cumulative distribution), the probability to
have damages larger than 8% of GDP is 62.6% under
NASH, while this probability becomes 8.5% under
COOP. So the sharp reduction in climate risks is a key
benefit of cooperation.

When looking at the country level, the most vul-
nerable countries are Africa, Mediterranean countries,
India, Asia (EAS and RAS) and Middle East countries,
with expected damages in 2200 lying between 10%
and 15% of GDP in NASH and between 4% and 5%
of GDP in COOP. For these countries, the benefits
associated to a reduction in the range of uncertainty
are also strong. The reduction of the range is about
25 percentage points for Africa, while it is about 13
percentage points for the whole world.

A similar analysis can be made for the case θ3 = 2,
illustrated in Fig. 6. We know that in that case, the
impact of risk aversion is weaker, so that the results are
less striking. We still find that cooperation reduces both
expected damage and the size of uncertainty. At the
world level, expected damages represent 4% of GDP
under NASH but only 3% of GDP under COOP. There
is a 95% chance that damages are less than 9% of GDP
under NASH. There is a 95% chance that they are less
than 6.5% of GDP under COOP.

The list of the most vulnerable countries is the same
in the case θ3 = 2 as in the case θ3 = 2.7. But we can
see that the benefits of cooperation in terms of risk
reduction are less pronounced for these countries when
θ3 = 2.

Finally, the estimates of the probability ranges for
damages can be compared with those provided in the
Stern review [33]. The Stern review indeed obtained a
90% confidence interval range for damages in 2200 as
% of GDP of 0.5–12 in its baseline. In the case θ3 = 2,
we obtain a much smaller range: 1–6.5 in the COOP
scenario. The reason for the discrepancy is that the
Stern review considers a business as usual (no policy)
scenario, while we assume that policy makers play a
Nash policy and try to reduce the range of uncertainty.
In the case θ3 = 2.7, our range is similar to the one

obtained by Stern because damages are more severe
and much more difficult to avoid.

5 Conclusion

In this paper, we have analysed how taking uncertainty
into account in an IAM impacts policy design and in-
centives to cooperate for different countries. It appears
that uncertainty does not change very much policy
recommendations. But this finding crucially depends on
the shape of the damage function.

Our analysis indeed reveals that the impact of risk
aversion can be very different depending on the shape
of the damage function. The degree of convexity of this
function plays a crucial role in determining in which
direction uncertainty changes policy recommendations.
Sensitivity analysis is usually not performed on the
exponent of the damage function, nor is it performed
on the exact form of this function. Our results suggest
that much more must be learnt on the damage func-
tions if we want to be more confident in the model’s
results. This concurs with Weitzman’s contention that
more research is needed on the shape of the damage
function [40]. Besides, in a multi-country setting, it
may well be that the shape of the damage function
differs from one country to another. This may yield to
very different policies being followed. Taking this into
account may enrich the strategic analysis of the climate
change problem. This presupposes that more empirical
research be carried out to calibrate damage functions at
the regional level.

We have highlighted that all countries have two
incentives to join a grand coalition (COOP scenario),
namely the reduction in expected damages and the
reduction in risk. When uncertainty is taken into ac-
count, new reasons to cooperate thus appear. A nat-
ural avenue for further research would be to study at
the country level the incentives to join an agreement
(whether a grand coalition or a partial agreement be-
tween some countries). From the modelling point of
view, we have highlighted that it is possible to handle
a stochastic IAM with a finer discretization. This de-
velopment may open new horizons such as multistage
stochastic problem with recourse modelling. Exploring
those two issues will be the matter of another paper.
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Appendix

Regions of the CWS Model

Table 4 Regions of the CWS model

Label Name of the region Composition

CAN Canada
USA USA
JPN Japan Japan, South Korea
EU European Union EU15
OEU Other Europe Iceland, Norway, Switzerland
CEA Central Eastern Bulgaria, Cyprus, Czech Republic,

Associates Estonia Hungary, Latvia,
Lithuania, Malta, Poland,
Romania, Slovakia, Slovenia

FSU Former Soviet Armenia, Azerbaijan, Belarus,
Union Georgia, Kazakhstan, Kyrgyzstan,

Moldova, Russian Federation,
Tajikistan, Turkmenistan,
Ukraine, Uzbekistan

AUZ Australasia Australia, New Zealand
MED Mediterranean Algeria, Egypt, Israel, Lebanon,

Morocco, Syria, Tunisia, Turkey
MEA Middle East Bahrain, Iran, Jordan, Kuwait,

Oman, Saudi Arabia,
United Arab Emirates, Yemen

AFR Africa Angola, Benin, Botswana,
Burkina Faso, Burundi,
Cameroon, Cape Verde,
Central African Republic,
Chad, Comoros, Congo,
Democratic Republic of Congo,
Djibouti, Equatorial Guinea,
Eritrea, Ethiopia, Gabon,
Gambia, Ghana, Guinea,
Guinea Bissau, Ivory Coast,
Kenya, Lesotho, Madagascar,
Malawi, Mali, Mauritania,
Mauritius, Mozambique,
Namibia, Niger, Nigeria,
Reunion, Rwanda, Senegal,
Sierra Leone, South Africa,
Sudan, Swaziland, Tanzania,
Togo, Uganda, Zambia,
Zimbabwe

CHN China
IND India
RAS Rest of Asia Bangladesh, Cambodia, Laos,

Mongolia, Nepal, Pakistan,
Papua New Guinea, Sri Lanka

EAS Eastern Asia Indonesia, Malaysia, Philippines,
Singapore, Thailand, Vietnam

LAM Latin America Mexico, Brazil, Venezuela,
Peru, Argentina, Chile,
Uruguay, Paraguay

Table 4 (continued)

Label Name of the region Composition

LAO Latin America Bolivia, Colombia, Costa Rica,
Other Dominican Republic, Ecuador,

El Salvador, Guatemala, Haiti,
Honduras, Jamaica, Nicaragua,
Panama, Trinidad and Tobago,
Bahamas, Belize, Guyana,
Suriname

ROW Rest of the World Afghanistan, Cuba, Libya, Iraq, . . .
∼25 countries (not assignable or
with incomplete data)

Statement of the CWS Model

Variables and Parameters Def initions

Table 5 Names and units of variables

E Carbon emissions (billion tons of carbon per year)
μ Carbon emission abatement (%)
MAT Atmospheric carbon concentration

(billion tons of carbon)
MUO Upper ocean and vegetation carbon concentration

(billion tons of carbon)
MLO Lower ocean carbon concentration

(billion tons of carbon)
F Radiative forcing (Watt per m2)
TL Temperature change lower ocean

( ◦C compared to 1,800)
TE Temperature change atmosphere

( ◦C compared to 1,800)
Y Production (billion US $2,000 )
Z Consumption (billion US $2,000 )
I Investment (billion US $2,000 )
C Abatement costs (billion US $2,000 )
D Damage costs (billion US $2,000 )
K Capital stock (billion US $2,000 )

Table 6 Names and units of parameters

Y2,000 GDP values 2,000 in million US $2,000
in market exchange value

L2,000 Population 2,000 (million people)
E2,000 CO2 emissions 2,000 from fossil fuel in gtC
A0 Initial productivity 2,000
AT Regional asymptotic productivity
AG

0 Initial regional productivity growth rate
per decade (2000–2010)

σ0 Initial emission–GDP ratio 2,000
(kg of carbon per US$)

σT Regional asymptotic emission–GDP ratio
(kg of carbon per US$)

σG
0 Initial regional emission–GDP growth rate

per decade (2000–2010)
LG

0 Initial regional population growth rate
per decade (2000–2010)
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Constraints

The index i = 1, . . . N stands for region/country.

Yi,t = Ai,t Kα
i,t L

1−α
i,t (5)

Yi,t = Zi,t,s + Ii,t + Ci(μi,t) + Di
(
T E

t,s

)
(6)

Ki,t+1 = (1 − δK)10 Ki,t + 10Ii,t , with Ki,0 given (7)

Ei,t = σi,t(1 − μi,t)Yi,t, with μ ∈ (0, 1) (8)

Ci(μi,t) = −Yi,t ci
[
(1 − μi,t)log(1 − μi,t) + μi,t

]
(9)

MAT
t+1 = MAT

t + 10

⎛

⎝MAT
t b 11 +

n∑

j=1

E j,t + MUO
t b 21

⎞

⎠

(10)

MUO
t+1 = MUO

t + 10
(
MAT

t b 12 + MUO
t b 22 + MLO

t b 32
)

(11)

MLO
t+1 = MLO

t + 10
(
MLO

t b 33 + MUO
t b 23

)
(12)

Ft = F2X
(

log (Mt/M0)

log(2)

)

+ RFOgast (13)

T E
t+1,s = T E

t,s

1 + c1(F2X/T2Xs) + c1c3

+ c1
(
Ft+1 + c3TL

t,s

)
, with T E

0 given (14)

TL
t+1,s = TL

t,s + c4
(
T E

t,s − TL
t,s

)
, with TL

0 given (15)

Di
(
T E

t,s

) = Yi,t

[
θi,1T E

t,s + θi,2
(
T E

t,s

)θ3
]

(16)

Parameters Values

Table 7 General scalars

δK Depreciation rate of capital per year 0.10
η Risk aversion 2.0
α Capital elasticity in output 0.25
ρ Discount rate 0.02

Table 8 Asymptotic values

AT Regional asymptotic productivity 20
σT Regional asymptotic emission–GDP ratio 0.020

(kg of carbon per US$)

Table 9 Parameters for
abatement cost and damage
functions

Y2,000 L2,000 E2,000 A0 AG
0 σ0 σG

0 LG
0

CAN 714.458 30,769 0.142 1,445 1.045 0.199 0.029 1.484
USA 9,764.800 285,003 1.581 1,934 1.309 0.162 0.031 1.328
JPN 4,649.615 150,035 0.345 1,794 1.132 0.074 0.020 0.480
EU 8,027.668 377,335 0.891 1,353 1.397 0.111 0.023 0.425
OEU 421.584 11,928 0.023 1,980 1.523 0.055 0.023 0.259
CEA 402.052 68,676 0.195 514 5.333 0.485 0.070 −0.161
FSU 352.493 282,353 0.617 161 4.265 1.750 0.057 −0.025
AUZ 452.338 22,937 0.100 1,278 1.034 0.221 0.028 1.400
MED 557.409 231,016 0.167 264 2.401 0.300 0.053 2.021
MEA 443.778 119,994 0.227 364 2.449 0.512 0.053 1.957
AFR 338.556 640,874 0.151 85 2.704 0.446 0.052 1.523
CHN 1,198.480 1,282,022 0.928 130 6.084 0.774 0.092 0.931
IND 460.189 1,016,938 0.282 75 4.256 0.613 0.074 1.594
RAS 152.075 348,978 0.044 73 2.370 0.289 0.054 2.159
EAS 1,089.013 477,183 0.336 254 2.542 0.309 0.050 1.544
LAM 1,740.755 382,068 0.299 426 1.614 0.172 0.038 1.607
LAO 225.167 120,851 0.054 218 2.855 0.240 0.056 1.710
ROW 43.765 131,688 0.046 60 4.159 1.051 0.064 0.773
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Table 10 Parameters for abatement cost and damage functions

θ1 θ2 c

CAN 0.0000616 0.0015639 −0.054
USA 0.0000000 0.0014167 −0.033
JPN 0.0000053 0.0016178 −0.019
EU 0.0000452 0.0015911 −0.032
OEU 0.0000452 0.0015911 −0.028
CEA 0.0000452 0.0015911 −0.079
FSU 0.0000011 0.0013047 −0.12
AUZ 0.0000616 0.0015639 −0.045
MED 0.0034448 0.0019832 −0.188
MEA 0.0027937 0.0015860 −0.104
AFR 0.0034448 0.0019832 −0.13
CHN 0.0009018 0.0012589 −0.162
IND 0.0043852 0.0016913 −0.096
RAS 0.0017551 0.0017468 −0.112
EAS 0.0017551 0.0017468 −0.089
LAM 0.0006090 0.0013461 −0.069
LAO 0.0006090 0.0013461 −0.107
ROW 0.0006090 0.0013461 −0.063

Table 11 Parameter values carbon cycle

M0 Initial atmospheric CO2 590
concentration in 1,800 (btC)

MAT
0 Initial atmospheric CO2 783

concentration in 2,000 (btC)
MUO

0 Initial upper ocean and vegetation CO2 807
concentration in 2,000 (btC)

MLO
0 Initial lower ocean CO2 19,238

concentration in 2,000 (btC)
b11 Carbon cycle transition matrix −0.033384

coefficient
b22 Carbon cycle transition matrix −0.039103

coefficient
b33 Carbon cycle transition matrix −0.000422

coefficient
b12 Carbon cycle transition matrix 0.033384

coefficient
b 21 Carbon cycle transition matrix 0.027607

coefficient
b 23 Carbon cycle transition matrix 0.011496

coefficient
b 32 Carbon cycle transition matrix 0.000422

coefficient

Table 12 Parameter values temperature cycle

TL
0 Initial temperature change lower ocean 0.108

(◦C compared to 1,800)
TE

0 Temperature change atmosphere 0.622
(◦C compared to 1,800)

F2X Forcing with a carbon 3.800
concentration doubling

c1 Coefficient for upper level 1.7
c3 Transfer coefficient upper to lower level 0.794

c4 Transfer coefficient for lower level 0.03609

Probability Distribution

Table 13 Validation set: probability of elements

s T2Xs πs s T2Xs πs s T2Xs πs

1 1.0 0.00001 26 3.5 0.02599 51 6.0 0.01044
2 1.1 0.00001 27 3.6 0.02528 52 6.1 0.01007
3 1.2 0.00007 28 3.7 0.02454 53 6.2 0.00972
4 1.3 0.00027 29 3.8 0.02377 54 6.3 0.00938
5 1.4 0.00079 30 3.9 0.02299 55 6.4 0.00906
6 1.5 0.00179 31 4.0 0.02220 56 6.5 0.00875
7 1.6 0.00338 32 4.1 0.02142 57 6.6 0.00846
8 1.7 0.00553 33 4.2 0.02065 58 6.7 0.00817
9 1.8 0.00814 34 4.3 0.01989 59 6.8 0.00790
10 1.9 0.01103 35 4.4 0.01916 60 6.9 0.00765
11 2.0 0.01400 36 4.5 0.01844 61 7.0 0.00740
12 2.1 0.01687 37 4.6 0.01774 62 7.1 0.00716
13 2.2 0.01952 38 4.7 0.01707 63 7.2 0.00694
14 2.3 0.02185 39 4.8 0.01642 64 7.3 0.00672
15 2.4 0.02381 40 4.9 0.01580 65 7.4 0.00651
16 2.5 0.02538 41 5.0 0.01520 66 7.5 0.00632
17 2.6 0.02658 42 5.1 0.01462 67 7.6 0.00612
18 2.7 0.02742 43 5.2 0.01407 68 7.7 0.00594
19 2.8 0.02794 44 5.3 0.01354 69 7.8 0.00577
20 2.9 0.02819 45 5.4 0.01304 70 7.9 0.00560
21 3.0 0.02821 46 5.5 0.01255 71 8.0 0.00541
22 3.1 0.02803 47 5.6 0.01209
23 3.2 0.02768 48 5.7 0.01165
24 3.3 0.02721 49 5.8 0.01123
25 3.4 0.02664 50 5.9 0.01082
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