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1 Introduction

There exist huge uncertainties surrounding the magnitude and the speed of climate
change. How do such uncertainties shape climate policies is the first question addressed
in this paper.

The recent literature in economic theory has highlighted the consequences for cli-
mate policy of the uncertainties concerning the severity of climate change. Gollier [21]
has pointed out that a prudent society should discount the future at a lower rate when
it faces uncertainty. This means that a larger investment to prevent future losses (like
climate damages) is socially desirable. The finding was discussed and confirmed by
several later contributions (e.g. [2, 17]). Weitzman [39] even suggested that if the
distribution of damages exhibits a “fat-tail”, policy recommendations may be radically
altered. In the expected utility framework, this induces (infinitely) negative discount
rates urging prompt action to avoid climate change (see also [2, 17]). Despite these
theoretical results, the impact of uncertainty on climate policy design has hardly been
studied in Integrated Assessment Models (henceforth IAMs). These models combine
scientific and socio-economic aspects of climate change to assess climate change poli-
cies. Several of such models use optimal economic growth modeling, in line with the
original model of Ramsey [29], for instance DICE [25], MERGE [23], OMEGA [19],
PAGE [33], WITCH [10] or CWS [13, 15, 36].

Most of the uncertainty analyses carried out have taken the form of sensitivity
analysis, in particular Monte-Carlo analyses (see e.g. [28, 33]). The aim was to obtain
probability ranges for temperature increase or damages. But such analyses suppose that
policy is designed after the uncertainty is resolved. By contrast, it is of interest to study
how dealing with uncertainty reshapes policies and changes incentives to cooperate in
an expected utility framework similar to the one used in the theoretical contribution
by Gollier [21] and Weitzman [39]. To the best of our knowledge, the only contribution
of this kind is the one by Nordhaus and Popp [26]. Still, these authors focus on the
value of information rather than on the design of climate policies. The second question
addressed in this paper is to assess to what extent cooperation can contribute to the
protection against high climate damages. It is well-know that cooperation is welfare-
improving at the global level, but does it allow to reduce risk? If it is the case, then it
means that cooperation brings out a side benefit.1

In the present article we propose to model decision making under uncertainty in
an IAM: the ClimNeg World Simulation model (CWS). To do so, the CWS model had
to be adapted to deal with uncertainty. There exist several techniques to do so, and
they can be split into two categories: anticipative and non-anticipative. The first cat-
egory assumes that the decision-makers have perfect knowledge. The second category
assumes that the decision-makers take the decisions that are best adapted to different
possible realizations of uncertainty. Sensitivity analyses fall in the first category. In this
paper, we deal with the second category of techniques, which encompasses stochastic
programming [9], dynamic programming [6], or more recent techniques such as robust
optimization [8] or programming techniques using affine or step decision rules [7, 35].

1Here we do not raise the issue of countries’ incentive for cooperation. For such an analysis, see
eg. [13].
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The usual growth models à la Ramsey are written in a programming or algebraic
modeling language as linear programming problems.2 Linear programming is a very
powerful optimization technique that can easily handle uncertain components. One
can easily define the deterministic equivalent of a stochastic problem, especially if this
problem is a linear programming problem. This step can even be automatized, as in
[34].

Stochastic programming is the technique we have chosen to handle uncertain com-
ponents in the CWS model, but other tools have already been used in the field. The
use of stochastic modeling in IAMs has been proposed by [1] with a model derived
from DICE in which the uncertain parameter is revealed at a given time period, and
discretized in three values. In [41], the authors use stochastic differential equations
and meta-modeling. In [4], an optimal timing of climate policies is found using dy-
namic programming to represent a two steps process (revelation of the true climate
sensitivity value and availability of a backstop technology) in which the order of the
steps is not known in advance. Stochastic programming technique has been used in
only one model, WITCH, where the efficiency of the clean technology [11] or the CO2

concentration target in 2100 [12] could be defined as uncertain and resolved during the
horizon at a given time period.3

In this paper we shall present a stochastic version of the CWS model, called S-CWS.
This version deals with a larger number of values for the uncertain parameter than what
has been already done in similar models, such as WITCH. This better discretization
will allow us to determine optimal climate policies that are more robust. This is the
methodological contribution of the paper. The uncertain parameter will be the climate
sensitivity, and the countries will look for a unique policy to cope with the different
possible values of the uncertain parameter. As for economic analysis, our objective is
twofold. First, we study how uncertainty alters the chosen course of action. Second,
we highlight the consequences of uncertainty on the benefits from climate international
cooperation. The idea is to test to what extent countries may be able to cope with
uncertainty more efficiently under an international cooperation regime than alone.

The paper is organized as follows. In the next Section, we provide the theoreti-
cal background about policy design under uncertainty. In Section 3, we describe the
stochastic version of the CWS model. In Section 4 we discuss some findings obtained
with the simulation model. In Section 5 we provide some conclusive remarks.

2 Policy design under uncertainty

2.1 Choice under uncertainty

The economic theory has built a well-accepted framework to model how choices should
be made under uncertainty: the expected utility model.4 The model was initially

2The objective function is linear if the agent is risk neutral, but the constraints are always linear
in the decision variables.

3The parameter value is discretized in 3 values.
4Recently, the expected utility model has been challenged in the context of uncertainty, and several

alternatives have been proposed to represent ambiguity aversion and probabilities misperceptions. For
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developed by von Neumann and Morgenstern [38]. It is based on the idea that decision
makers seek to maximize the expected value of their utility.

Assume for instance that uncertainty is represented by S possible states of nature,
denoted {1, . . . , s, . . . , S}, which occur with respective probabilities (p1, . . . , ps, . . . , pS).
Let xs be the payoff obtained if the state of the world s realizes. The decision maker
maximizes

�
s psu(xs). When the function u is concave, the decision maker is said to

be risk-averse: she dislikes risk.
In this paper, we introduce the expected utility methodology in a multi-country inte-

grated assessment model of climate change. The payoff xi,s for a country i ∈ {1, . . . N}
in state of the world s is the discounted sum of total present and future consumption,
xi,s =

�T
t=1

Zi,t,s

(1+ρ)t−1 , where Zi,t,s is total consumption in country i in period t and state
of the world s, and ρ is the discount rate. We assume that consumption cannot be
known with certainty, so that Zi,t,s must be indexed by the state of the world, s. Every
country i therefore chooses the course of action that maximizes

Wi = u−1

�
�

s

psu

� T�

t=1

Zi,t,s

(1 + ρ)t−1

��
. (1)

A distinctive feature of the objective function Wi is that we take a transform u−1 of the
expected utility. This means that we take what is called the ‘certainty equivalent’ of the
expected utility, that is the utility a country would reach in the absence of uncertainty.
The reason for this modelling choice is that we want to have some coherence between
our stochastic results and those obtained in the usual deterministic case, so that we
are able to easily compare our results. Note indeed that if we were sure of the state of
the world s, we would take ps = 1 and ps� = 0 for all s� �= s, so that the above objective
function would become Wi =

�T
t=1

Zi,t

(1+ρ)t−1 .5 This is precisely the objective function

used in the deterministic version of the CWS model [15, 36].
We assume that the function u(.) in the above expression has the form

u(x) =
x1−η

1− η
,

where η > 0 is the coefficient of relative risk aversion. A higher η means that the
society is more averse to risk: it is willing to pay more to avoid a risk. Throughout the
paper, we will take η = 2, which is a quite standard value in the literature (see [3, 20]
for instance).

We assume that the function u has the form u(x) = x1−η

1−η , where η > 0 is the
coefficient of relative risk aversion. A higher η means that the society is more averse
to risk: it is willing to pay more to avoid a risk. Throughout the paper, we take η = 2,
a standard value in the literature (see [3, 20] for instance).

the role of these models in the case of climate change see for instance [5, 16, 32]. However, the expected
utility model is a useful benchmark which has hardly been studied in IAMs. It is natural to take this
approach as a starting point.

5In contrast, not taking the transform u−1 would yield the objective function Wi =

u

� �T
t=1

Zi,t,s

(1+ρ)t−1

�
in the deterministic case, which looks quite unusual.
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2.2 Implications for climate change policies

A key feature of the expected utility model is that welfare can be decomposed in two
elements: the expected payoff and the amount of risk a decision maker bears. There is
a potential trade-off between these two dimensions: in order to obtain a sure outcome,
the decision maker is ready to give up some of her expected payoff. The amount she
is ready to give up precisely measures her risk aversion. It is called the risk premium.
It is of interest to determine whether a policy can improve welfare in one of the two
dimensions (expected payoff and risk premium) or both.

In the context of climate change, countries must take decisions under large un-
certainties about the dynamics of the climatic system. We assume that uncertainty is
never resolved. By assuming that countries do not adapt their plan to observed shocks,
we implicitly consider that there are other (unmodelled) forms of uncertainties affecting
the economy so that policy makers are unable to appropriately update their beliefs.6

In this context, the objective for a country is to find the policy that, if applied in all
possible states of the world, will maximize her expected utility. This means that the
policy must maximize the expected payoff without increasing uncertainty too much.

When there are uncertainties about how the climate reacts to greenhouse gases
(GHG) concentrations, introducing risk aversion may provide an additional rationale
for emission reduction. Indeed, if climate uncertainty keeps the expected damage
constant while increasing risk, countries are ready to abate more to avoid the risk.
One issue though is that the uncertainty about the climatic model does not translate
directly into an uncertainty about the payoff. In particular, the damages corresponding
to the expected parameters values of the climatic model are not necessarily the expected
damages taking into account all possible values of this parameter.

We hence cannot predict unambiguously whether the policy using ‘best guess’ es-
timates of the parameters will be more or less restrictive than the policy arising from
maximizing the expected utility. We shall indeed see in Section 4.1 that the damage
corresponding to the expected parameter value of the climatic model may be higher
than the expected damages, yielding more abatement and less emissions. If the climate
uncertainty would not affect the expected damages, the opposite would be true because
of risk aversion.

In a strategic framework, introducing uncertainty also has an impact on potential
climate agreements. Indeed, cooperation also permits to reduce uncertainty more ef-
fectively. Cooperation will both imply an efficient sharing of emissions to limit the
expected climate change impacts, and an efficient risk sharing between the regions.
One of our objectives is to study the impact of the additional gain from cooperation,
namely risk reduction.

6For a modeling of climate change policies with update of beliefs, see [11], [12], or [14] for decision
patterns using ‘model predictive control’.
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3 Dealing with uncertainty by using stochastic op-
timization

In order to design an appropriate climate policy to face climate sensitivity uncertainty,
we apply a technique of optimization under uncertainty to extend the ClimNeg World
Simulation model. This stochastic version is labelled S-CWS. In this section we shall
present the introduction of uncertainty in the climate sensitivity parameter. Then, we
shall explain how the CWS model has been adapted for stochastic computation.

3.1 Uncertainty about climate sensitivity

Climate sensitivity is a parameter in climate science surrounded by huge uncertainties.
Climate sensitivity measures how much global warming can be expected in equilibrium
after a doubling of GHGs concentration in the atmosphere. The Fourth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC, [27]) compiled 18
recent studies about the distribution of the climate sensitivity parameters. Most studies
highlight that there exist large uncertaintes about this parameter: this uncertainty
seems inherently very difficult to reduce. In particular, the possibility of high values of
the climate sensitivity parameter cannot be ruled out ([27, Chap. 10, pp. 798-799]).
There is little hope that the precise value can be learned with sufficient accuracy in the
near future because small uncertainties about various feedback mechanisms translate
into large uncertainties in climate sensitivity [30].

Many estimates of this parameter lie in the region around 4, which means a 4-
degree expected increase in the average earth surface temperature for a doubling in
GHG concentration in the long term. Most climate models generate an asymmetric
distribution around this value. As explained by Roe and Baker [30], a distribution
with a fat tail is a natural outcome of uncertainty about the various feedback processes
whereby higher temperatures raise the level of radiative forcing. It is natural to portray
the uncertainty about such feedbacks as uncertainty about climate sensitivity. This
route is also suggested by Weitzman [39].

We generate the distribution of the climate sensitivity parameter following the same
reduced-form approach as in [30]. In their notation, we set f = 0.77 and σf = 0.189 (f
and σf are respectively the mean and the standard deviation of the distribution of the
total feedback factor). We obtain a probability distribution function (p.d.f.) similar in
shape to the one reported in [31]. The mean and median of this theoretical distribution
are 4.16 and 3.81, respectively. Figure 1 plots the p.d.f. used in our simulations.7

3.2 A stochastic version of the CWS model

The stochastic version of the CWS model (S-CWS) consists in an integrated assessment
model of climate change and optimal growth, adapted for coalitional analysis from [25].
It encompasses economic, climatic and impact dimensions in a worldwide intertemporal

7Many other p.d.f. are available in the literature review carried out by the IPCC report [27],
for instance [24], [22] or [18]. We have performed some sensitivity analysis, which showed that our
numerical results are robust to the choice of the p.d.f.
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Figure 1: Probability density function for climate sensitivity (x -axis) built from Roe
and Baker [30].
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setting. As a Ramsey-type model (see [29]), economic growth is driven by population
growth, technological change and capital accumulation. The time dimension is discrete,
indexed by t, finite, but very long.8

The world is split into 18 countries9 (for the list, see Table 4 in Appendix). In each
country i = 1, . . . n, gross output Yi,t is given by a Cobb-Douglas production function
combining capital and labor. Population change is exogenous. Capital accumula-
tion results from an endogenous gross investment Ii,t reduced by exogenous scrapping.
Technical progress is Hicks-neutral. Carbon emissions stem from global output with
an emission coefficient which can be reduced by national policies, �σi,t = (1 − µi,t)σi,t,
where µi,t ∈ [0, 1] stands for the carbon abatement rate and σi,t is the exogenous carbon
intensity of the economy. Abatement costs are given by an increasing and convex cost
function Ci(µi,t).

GHG concentration, through a simplified carbon cycle, yields a global mean tem-
perature expressed as temperature change with respect to the pre-industrial level, TE

t .
A key equation of the climatic model is the one which describes the dynamics of tem-
perature.10 This is the equation where the uncertain climate sensitivity parameter
T2Xs enters, so that temperature increase depends on the state of the world s:

TE
t+1,s =

TE
t,s

1 + c1(
F2X
T2Xs

) + c1c3

+ c1(Ft+1 + c3T
L
t,s),

where F2X, Ft+1 and TL
t,s stand for carbon forcing, radiative forcing, and temperature

change in lower ocean, respectively. It is possible to show that the relationship between

8Specifically, the simulation horizon is 2330.
9For short, we use the term country to denote the regions/countries of the S-CWS model.

10For the list of variables and the complete description of the model, see the Appendix.
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TE
t+1,s and T2Xs is concave for T2Xs ≥ 1.

Starting from the climate module of the model, the uncertainty is transmitted into
the countries’ payoffs through the damage functions:

Di(T
E
t,s) = Yi,t

�
θi,1T

E
t,s + θi,2

�
TE

t,s

�θ3
�
. (2)

The damage functions are increasing and convex in temperature change.11 Finally,
consumption Zi,t,s is given by the gross output minus investment, abatement costs and
damage costs:

Zi,t,s = Yi,t − Ii,t − Ci(µi,t)−Di(T
E
t,s).

As a result, countries’ payoffs are stochastic.
This economic model is converted into a 18-player game by letting the countries

be the players, whose strategies are the decision variables Ii,t and µi,t over the entire
period 2000-2300. The S-CWS model is used to determine paths of investment (Ii,t)
and emissions (through µi,t) that permit to face the uncertainty. Stated otherwise,
the aim is to find paths of policy instruments that, if applied in any realization of the
uncertain parameter, would maximize an objective function. The value of the objective
function of a country-player i is defined as follows:

Wi = u−1

��
u

� T�

t=0

Zit(ξ̃)

(1 + ρ)t−1

�
dD(ξ̃)

�
, (3)

where u(x) = x1−η

1−η is the utility function, with η the degree of risk aversion and ρ the
discount rate. This objective function is to be maximized according to the decision
variables, where ξ̃ is a continuous random variable of probability function D defined on
a given probability space. Let us approximate the continuous variable ξ̃ by a discrete
one denoted by ξ. We are now able to define the objective function of the deterministic
equivalent of the stochastic objective (3), which is nothing more than Equation (1),
where we assumed that the states of the world ξs were known and countable (s =
1, . . . S).

The players-countries’ strategies are specified according to two alternative scenar-
ios. First, the Nash equilibrium scenario, which is the joint outcome of each country
maximizing its welfare taking the actions of the others as given.12 Second, the Cooper-

ative scenario where all countries act jointly so as to maximize the world welfare. This
scenario is Pareto-efficient.13 The two scenarios are formally defined as follows (the
constraints (5a)-(5l) of the model can be found in the Appendix):

11Values for those polynomials have been updated from the DICE-2010 model.
12In the terminology of dynamic noncooperative games this is an open loop Nash equilibrium.

Closed loop or feedback Nash equilibria have also been introduced in dynamic core-stability analysis
in [37], albeit with a simpler model.

13A third kind of scenario can also be computed, namely the Partial Agreement Nash Equilibria
with respect to a coalition scenarios (PANEs). Each PANE is the outcome of a subset of countries
maximizing jointly their welfare, while the others act individually (there are as many such scenarios
considered as there are coalitions). See [15] or [36] for applications with PANEs.
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• Cooperative scenario (COOP):
(µCOOP

i,t , ICOOP
i,t )i=1,...N

t=0,...T
that solves:

Max W =
�

i Wi, subject to (5a)-(5l).

• Nash equilibrium scenario (NASH):
(µNASH

i,t , INASH
i,t )i=1,...N

t=0,...T
that solves, for each i = 1, . . . N :

Max Wi, subject to (5a)-(5l), with Ej,t = ENASH
j,t ,∀j �= i, t = 0, . . . T .

Solving a problem for S = 1 boils down to assuming that the value of the variable ξ
(which is a parameter in this case) is known beforehand. So this is a pure deterministic
framework. Such a solution is also named See and Act in [26, 40]. Solving a problem
with S > 1 boils down to assume that uncertainty is not resolved until the last period.
As explained in Section 2.2, we indeed assume that our problem has no recourse, so
that the sequence of the process is the following: (i) decisions are taken, then (ii) after
the last period uncertainty is resolved. The solution is named Act and See in [26].

The larger S, the better the numerical approximation. However, enlarging S in-
creases the size of the computation problem: stochastic programming suffers from the
curse of dimensionality [6]. If the deterministic problem is already a large dimensional
problem, then it is almost impossible to stochastize it. The CWS model is a rather
small-scale model, so we were rather confident being able to define a problem with
a larger S than what has been done in the literature, i.e. S greater than 3.14 In-
deed, the S-CWS model includes a description of the climate sensitivity parameter in
7 values, which is the maximum number manageable with the current version of the
GAMS-CONOPT software.

Nevertheless, even if S is large, there still exists a discrepancy between the approxi-
mated (discrete) distribution and the real (continuous) one. This is why it is important
to validate the results of the optimization (or prediction phase) in what we shall call a
validation phase.15

We define two distinct sets of possible outcomes of the random variable ξ: (i) a
large set V for Validation set which is supposed to be the real distribution (or a very
close approximation) and (ii) a smaller set C for Computation set (or optimization set)
that can be included in V .16 In practice, the sets could be defined by a Monte Carlo
random draw. The output of the optimization phase consists in a set of optimal values
I∗i,t and µ∗

i,t for the decision variables and the associated value W ∗ of the objective
function W =

�
i Wi at the optimum. We call this value prediction. The value W ∗ is

of limited interest because it is computed on the basis of a small set, C. To validate the
optimal policy found, we propose to compute17 a more robust value, that is the mean

14The CWS model has been initially developed for coalition analyses that need a huge number of
model runs. The limited size of the generated problem was then a main constraint. In that sense,
CWS is different from other growth models such as WITCH or DICE that are more detailed, but also
less manageable.

15This phase could also be used to contrast several approaches, for instance models with different
values of S.

16In a multistage context, the computation set should be aggregated in a tree to be exploited by
the model.

17There is no optimization, only computation using the optimal policy found.
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of the objective function if we apply the optimal policy on a large set V of outcomes
of the random variable.18 This mean value is denoted by W V and is the result of the
validation phase:

W V =
SV�

i=1

piW (µ∗, I∗, ξi) (4)

Based on the probability distribution presented in Section 3.1, the computation set
C, with SC = 7, is as defined in Table 1. The validation set V is defined on the same
basis but with a larger cardinality, SV = 71. The values for T2Xs range from 1.0 to
8.0 with a step of 0.1. The associated probabilities are presented in the Appendix in
Table 13.

s T2Xs ps

1 1.7625000 0.03101
2 2.5062400 0.23156
3 3.4310000 0.26034
4 4.4188400 0.18879
5 5.4189100 0.12881
6 6.4214700 0.0896
7 7.4690200 0.06989

Table 1: Computation set: value and probability of elements

4 Computation results

4.1 How risk aversion shapes climate policies

The first set of results will allow us to show how the policies carried out in the NASH
and COOP scenarios change when policy makers are risk averse. In other words, we
shall compare the value of the policy instruments under the NASH and COOP scenarios
when policy makers are risk averse with the ones in the deterministic case. Table 2
displays all figures in difference with respect to the deterministic case. They are shown
for two values of the exponent θ3 of the damage function (see Equation 2 above), and
the rationale for this will appear soon.

Let us start with the benchmark case where the damage parameter θ3 is 2.0.19 What
Table 2 shows is that the average abatement rate µi is lower, whatever the scenario.
As a result, GHG emissions are higher (+0.40% in NASH and +0.05% in COOP)
and cumulated damages larger in both scenarios (+0.05% in NASH and +0.37% in
COOP). In the meantime, global output is enhanced, so that cumulated discounted
consumption is left unchanged. Surprisingly, welfare remains almost unchanged when

18Empirically, it is well known that the result of stochastic programming optimization, or prediction
value, is very optimistic, and in a sense, not realistic, and that the policy found is very sensitive, not
robust.

19θ3 = 2.0 is the benchmark value in the CWS model as well as in many IAMs.
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Table 2: Differences between stochastic and deterministic policies (expressed w.r.t.

deterministic policy)

Damage parameter Damage parameter
θ3 = 2.0 θ3 = 2.7

NASH COOP NASH COOP
Abatement rate (in 2200, in point of %) -0.02 -0.18 0.70 0.65
GHG emission level (in 2200) 0.40% 0.05% -1.75% -3.18%
Damages (cumulated, discounted) 0.05% 0.37% -1.79% -2.86%
Consumption (cumulated, discounted) 0.00% 0.00% 0.09% 0.00%
Temperature (in 2200, in oC) 0.00 0.01 -0.03 -0.04
Welfare 0.00% 0.00% 0.09% 0.00%

risk is taken into account. This is due to the almost unchanged level of expected
consumption combined with a very small effect of risk (small risk premia). To sum up,
the two striking results coming out from the first two columns of Table 2 are that (i)
the world emission level is higher, and (ii) positive and negative effects cancel out, so
that global welfare is unchanged.

Such a result was rather unexpected. What would have been naturally expected
is a lower emission level and a gain in welfare under risk aversion. To understand
this counter-intuitive result we need to compute a sensitivity analysis. This sensitivity
analysis consists in setting the exponent parameter of the damage functions θ3 to 2.7
in all countries (instead of 2.0). In this case, the results look quite different, as shown
in Table 2. Now, GHG emissions are lower under risk aversion (-1.75% in NASH and
-3.18% in COOP, in 2200) because of much stronger abatement rates. This leads to
a smaller temperature increase and damages reduced by 1.79 and 2.86%, respectively.
These results are now in line with the intuition: when policy makers are risk averse,
abatement efforts are much stronger and, as a result, climate change is curbed.

The rationale for this unexpected outcome was actually provided in Section 2.2. In-
deed, the uncertainty about the climate sensitivity parameter does not readily translate
into damages. In particular, damages at the expected value of the climate sensitivity
parameter are larger than expected damages. This comes from the fact that, in a more
complex model as S-CWS, the relationship between the climate sensitivity and the
damages can be non-linear, as illustrated in Figure 2. The shape of the relationship
depends on the interplay between two features. On the one hand, the stronger the con-
vexity of the damage function, the stronger the incentive for risk averse policy makers
to avoid a too large temperature increase, and thus their incentive to curb GHG emis-
sions. But, on the other hand, the impact of larger GHG emissions on temperature
increase depends on the radiative forcing of emissions, and this radiative forcing has a
concave shape. So the combination of these two effects, (i.e. the link between global
emissions and damages) may well be either concave or convex. If it is convex, then the
intuition applies, namely that abatement efforts will be stronger under risk aversion.

11



Figure 2: Relation between climate sensitivity (x -axis) and cumulated discounted damages
(y-axis) under NASH for three damage parameters: θ3=1.5 (dashed line), θ3=2.0 (dotted
line) and θ3=2.7 (solid line).

But if it is concave, then the contrary applies.20 The S-CWS model reveals that the
former comes out when θ3 = 2.0, and the latter when θ3 = 2.7.

Let us remark that the potential existence of a concave relationship between climate
sensitivity and temperature contrasts with the analysis of Weitzman [39]. This comes
from the fact that Weitzman considers a simplified model where the climate dynam-
ics is at a stationary equilibrium, so that temperature increase (from doubling GHG
concentration) is exactly the value of the climate sensitivity parameter. Our dynamic
analysis suggests that taking into account climate dynamics is likely to question the
mechanism highlighted by Weitzman.

4.2 The benefits of cooperation

The benefits of cooperation in the case of climate change are well established in the
literature. They have been illustrated with the deterministic version of the CWS model
in [15] and [36]. The purpose of this section is to ask whether side benefits can be
expected from cooperation when policy makers are risk averse. We have learnt from the
previous section that a key element in the analysis is the convex/concave relationship
between climate sensitivity and damages. So we shall perform our analysis again for
two values of the parameter θ3, 2.0 and 2.7. The results are displayed in Table 3.

It first appears from Table 3 that cooperation has a strong impact on global GHG
emissions: they are reduced (in 2200) by 27.9% when θ3 = 2.0, and by 60.8% when

20Indeed, if the relationship between global emissions and damages is convex, we know by Jensen’s
inequality that damages from expected emissions are lower than expected damages from emissions.
Therefore there are additional incentives to reduce emissions when risk is explicitly taken into account.
The opposite is true when the relation is concave.
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Table 3: Differences between COOP and NASH (expressed w.r.t. NASH)
Damage parameter Damage parameter

θ3 = 2.0 θ3 = 2.7
Abatement rate (in 2200, in point of %) 16.85 31.87
GHG emission level (in 2200) -27.99% -60.85%
Damages (cumulated, discounted) -24.66% -62.57%
Consumption (cumulated, discounted) 0.35% 2.71%
Temperature (in 2200, in oC) -0.81 -1.78
Welfare 0.35% 2.71%

θ3 = 2.7, with respect to NASH. Global welfare is thus increased by 0.35% and 2.71%,
respectively.

Figure 3: Empirical density curves of temperature increase in 2200 (x-axis) under NASH
(dotted line) and COOP (solid line) for θ3 = 2.0 (left panel) and θ3 = 2.7 (right panel)

Figure 3 displays the density curves (or p.d.f.) of the global temperature increase in
the two scenarios, and for the two values of the damage parameter. It clearly appears
that the distribution shifts left under COOP, but one can also see that the shape is
changed: cooperation shrinks the range of the density curve. In other words, the world
becomes able to prevent itself from too high temperature increases. The probability
range at 90% is reduced roughly by one third. While (with θ3 = 2.7) there exists a
90 percent chance for the temperature increase to lie between +2.9◦C and +7.1◦C in
2200 for NASH, this range becomes +2.0◦C and +4.7◦C under COOP. The mean value
drops from +5.1◦C to +3.3◦C. How does this shift of the density curves in temperature
affect the economy? We have seen in Table 3 that consumption is increased, and so
does welfare in the COOP scenario. This shows that some of these beneficial effects
come from a more efficient management of the uncertainty related to climate damages.

The density curves for global damages are displayed in Figure 4. The figure shows
how risk aversion reshapes the density curve of damages. It appears that cooperation
is effective at shrinking the uncertainty range related to damages. In other words,
cooperation would effectively allow the world to avoid dramatic climate damages with a

13



Figure 4: Empirical density curves of climate damages in 2200 (x-axis) under NASH (dotted
line) and COOP (solid line) for θ3 = 2.0 (left panel) and θ3 = 2.7 (right panel)

high probability. So an important benefit from cooperation, in addition to the reduction
of expected damages, is to narrow the uncertainty range.

Figure 5 shows how damages at a probability range of 90% change between NASH
and COOP at the country level, as expressed in percent of GDP, for θ3 = 2.7. At
the world level (see the last bar on the right side of the figure), the expected damage
goes from 10% under NASH to less than 3% of GDP under COOP. But the impact of
cooperation on the probability range of damages is also striking. Under NASH, there
is 90% chance for damages to lie between 3% and 28% of GDP in 2200. Under COOP,
this 90% interval ranges between 1% and 9% of GDP. Put differently (and using the
cumulative distribution), the probability to have damages larger than 8% of GDP is
62.6% under NASH, while this probability becomes 8.5% under COOP. So the sharp
reduction in climate risks is a key benefit of cooperation.

When looking at the country level, the most vulnerable countries are Africa, Mediter-
ranean countries, India, Asia (EAS and RAS) and Middle East countries, with expected
damages in 2200 lying between 10% and 15% of GDP in NASH and between 4% and
5% of GDP in COOP. For these countries, the benefits associated to a reduction in the
range of uncertainty are also strong. The reduction of the range is about 25 percentage
points for Africa, while it is about 13 percentage points for the whole world.

A similar analysis can be made for the case θ3 = 2, illustrated in Figure 6. We
know that in that case the impact of risk aversion is weaker, so that the results are less
striking. We still find that cooperation reduces both expected damage and the size of
uncertainty. At the world level, expected damages represent 4% of GDP under NASH
but only 3% of GDP under COOP. There is a 95% chance that damages are less than
9% of GDP under NASH. There is a 95% chance that they are less than 6.5% of GDP
under COOP.

The list of the most vulnerable countries is the same in the case θ3 = 2 as in the
case θ3 = 2.7. But we can see that the benefits of cooperation in terms of risk reduction
are less pronounced for these countries when θ3 = 2.

Finally, the estimates of the probability ranges for damages can be compared with
those provided in the Stern Review [33]. The Stern review indeed obtained a 90%
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Figure 5: Damages in 2200 for COOP (unfilled) and NASH (filled), in % of GDP, with
θ3 = 2.7; the bar stands for 90 pc.; the dot is the mean value (for country label, see Table 4
in the Appendix).

confidence interval range for damages in 2200 as % of GDP of 0.5-12 in its baseline.
In the case θ3 = 2, we obtain a much smaller range: 1-6.5 in the COOP scenario. The
reason for the discrepancy is that the Stern review considers a business as usual (no
policy) scenario, while we assume that policy makers play a Nash policy and try to
reduce the range of uncertainty. In the case θ3 = 2.7, our range is similar to the one
obtained by Stern, because damages are more severe and much more difficult to avoid.

5 Conclusion

In this paper, we have analyzed how taking uncertainty into account in an IAM impacts
policy design and incentives to cooperate for different countries. It appears that uncer-
tainty does not change very much policy recommendations. But this finding crucially
depends on the shape of the damage function.

Our analysis indeed reveals that the impact of risk aversion can be very different
depending on the shape of the damage function. The degree of convexity of this
function plays a crucial role in determining in which direction uncertainty changes
policy recommendations. Sensitivity analysis is usually not performed on the exponent
of the damage function, nor is it performed on the exact form of this function. Our
results suggest that much more must be learnt on the damage functions if we want
to be more confident in the model’s results. This concurs with Weitzmans contention
that more research is needed on the shape of the damage function ([39]). Besides, in a
multi-country setting it may well be that the shape of the damage function differs from
one country to another. This may yield to very different policies being followed. Taking
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Figure 6: Damages in 2200 for COOP (unfilled) and NASH (filled), in % of GDP, with
θ3 = 2; the bar stands for 90 pc.; the dot is the mean value (for country label, see Table 4 in
the Appendix).

this into account may enrich the strategic analysis of the climate change problem. This
presupposes that more empirical research be carried out to calibrate damage functions
at the regional level.

We have highlighted that all countries have two incentives to join a grand coalition
(COOP scenario), namely the reduction in expected damages and the reduction in
risk. When uncertainty is taken into account, new reasons to cooperate thus appear. A
natural avenue for further research would be to study at the country level the incentives
to join an agreement (whether a grand coalition or a partial agreement between some
countries). From the modeling point of view, we have highlighted that it is possible
to handle a stochastic IAM with a finer discretization. This development may open
new horizons such as multistage stochastic problem with recourse modeling. Exploring
those two issues will be the matter of another paper.
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Appendix

Regions of the CWS model

Label Name of the region Composition
CAN Canada
USA USA
JPN Japan Japan, South Korea
EU European Union EU15
OEU Other Europe Iceland, Norway, Switzerland
CEA Central Eastern Associates Bulgaria, Cyprus, Czech Republic, Estonia Hungary, Latvia,

Lithuania, Malta, Poland, Romania, Slovakia, Slovenia
FSU Former Soviet Union Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzs-

tan, Moldova, Russian Federation, Tajikistan, Turkmenistan,
Ukraine, Uzbekistan

AUZ Australasia Australia, New Zealand
MED Mediterranean Algeria, Egypt, Israel, Lebanon, Morocco, Syria, Tunisia,

Turkey
MEA Middle East Bahrain, Iran, Jordan, Kuwait, Oman, Saudi Arabia, United

Arab Emirates, Yemen
AFR Africa Angola, Benin, Botswana, Burkina-Faso, Burundi, Cameroon,

Cape Verde, Central African Republic, Chad, Comoros,
Congo, Democratic Republic of Congo, Djibouti, Equatorial
Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea,
Guinea Bissau, Ivory Coast, Kenya, Lesotho, Madagascar,
Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia,
Niger, Nigeria, Reunion, Rwanda, Senegal, Sierra-Leone,
South Africa, Sudan, Swaziland, Tanzania, Togo, Uganda,
Zambia, Zimbabwe

CHN China
IND India
RAS Rest of Asia Bangladesh, Cambodia, Laos, Mongolia, Nepal, Pakistan,

Papua New Guinea, Sri Lanka
EAS Eastern Asia Indonesia, Malaysia, Philippines, Singapore, Thailand, Viet-

nam
LAM Latin America Mexico, Brazil, Venezuela, Peru, Argentina, Chile, Uruguay,

Paraguay
LAO Latin America Other Bolivia, Colombia, Costa-Rica, Dominican Republic, Ecuador,

El Salvador, Guatemala, Haiti, Honduras, Jamaica, Nicaragua,
Panama, Trinidad and Tobago, Bahamas, Belize, Guyana,
Suriname

ROW Rest of the World Afghanistan, Cuba, Libya, Iraq, ... ∼ 25 countries (not
assignable or with incomplete data)

Table 4: Regions of the CWS model
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Statement of the CWS model

Variables and parameters definitions

E carbon emissions (billion tons of carbon per year)
µ carbon emission abatement (%)
MAT atmospheric carbon concentration (billion tons of carbon)
MUO upper ocean and vegetation carbon concentration (billion tons of carbon)
MLO lower ocean carbon concentration (billion tons of carbon)
F radiative forcing (Watt per m2)
TL temperature change lower ocean ( ◦C compared to 1800)
TE temperature change atmosphere ( ◦C compared to 1800)
Y production (billion US$ 2000 )
Z consumption (billion US$ 2000 )
I investment (billion US$ 2000 )
C abatement costs (billion US$ 2000 )
D damage costs (billion US$ 2000 )
K capital stock (billion US$ 2000 )

Table 5: Names and units of variables

Y2000 GDP values 2000 in million US$2000 in market exchange value
L2000 population 2000 (million people)
E2000 CO2 emissions 2000 from fossil fuel in gtC
A0 initial productivity 2000
AT regional asymptotic productivity
AG

0 initial regional productivity growth rate per decade (2000-2010)
σ0 initial emission-GDP ratio 2000 (kg of carbon per US$)
σT regional asymptotic emission-GDP ratio (kg of carbon per US$)
σG

0 initial regional emission-GDP growth rate per decade (2000-2010)
LG

0 initial regional population growth rate per decade (2000-2010)

Table 6: Names and units of parameters
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Constraints
The index i = 1, . . . N stands for region/country.

Yi,t = Ai,tK
α
i,tL

1−α
i,t (5a)

Yi,t = Zi,t,s + Ii,t + Ci(µi,t) + Di(T
E
t,s) (5b)

Ki,t+1 = (1− δK)10Ki,t + 10Ii,t, with Ki,0 given (5c)

Ei,t = σi,t(1− µi,t)Yi,t, with µ ∈ (0, 1) (5d)

Ci(µi,t) = −Yi,t ci [(1− µi,t)log(1− µi,t) + µi,t] (5e)

MAT
t+1 = MAT

t + 10(MAT
t b11 +

n�

j=1

Ej,t + MUO
t b21) (5f)

MUO
t+1 = MUO

t + 10(MAT
t b12 + MUO

t b22 + MLO
t b32) (5g)

MLO
t+1 = MLO

t + 10(MLO
t b33 + MUO

t b23) (5h)

Ft = F2X

�
log (Mt/M0)

log(2)

�
+ RFOgast (5i)

TE
t+1,s =

TE
t,s

1 + c1(F2X/T2Xs) + c1c3
+ c1(Ft+1 + c3T

L
t,s), with TE

0 given (5j)

TL
t+1,s = TL

t,s + c4(T
E
t,s − TL

t,s), with TL
0 given (5k)

Di(T
E
t,s) = Yi,t

�
θi,1T

E
t,s + θi,2

�
TE

t,s

�θ3
�

(5l)

Parameters values

δK depreciation rate of capital per year 0.10
η risk aversion 2.0
α capital elasticity in output 0.25
ρ discount rate 0.02

Table 7: General scalars

AT regional asymptotic productivity 20
σT regional asymptotic emission-GDP ratio (kg of carbon per US$) 0.020

Table 8: Asymptotic values
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Y2000 L2000 E2000 A0 AG
0 σ0 σG

0 LG
0

CAN 714.458 30769 0.142 1445 1.045 0.199 0.029 1.484
USA 9764.800 285003 1.581 1934 1.309 0.162 0.031 1.328
JPN 4649.615 150035 0.345 1794 1.132 0.074 0.020 0.480
EU 8027.668 377335 0.891 1353 1.397 0.111 0.023 0.425
OEU 421.584 11928 0.023 1980 1.523 0.055 0.023 0.259
CEA 402.052 68676 0.195 514 5.333 0.485 0.070 −0.161
FSU 352.493 282353 0.617 161 4.265 1.750 0.057 −0.025
AUZ 452.338 22937 0.100 1278 1.034 0.221 0.028 1.400
MED 557.409 231016 0.167 264 2.401 0.300 0.053 2.021
MEA 443.778 119994 0.227 364 2.449 0.512 0.053 1.957
AFR 338.556 640874 0.151 85 2.704 0.446 0.052 1.523
CHN 1198.480 1282022 0.928 130 6.084 0.774 0.092 0.931
IND 460.189 1016938 0.282 75 4.256 0.613 0.074 1.594
RAS 152.075 348978 0.044 73 2.370 0.289 0.054 2.159
EAS 1089.013 477183 0.336 254 2.542 0.309 0.050 1.544
LAM 1740.755 382068 0.299 426 1.614 0.172 0.038 1.607
LAO 225.167 120851 0.054 218 2.855 0.240 0.056 1.710
ROW 43.765 131688 0.046 60 4.159 1.051 0.064 0.773

Table 9: Initial data

θ1 θ2 c
CAN 0.0000616 0.0015639 −0.054
USA 0.0000000 0.0014167 −0.033
JPN 0.0000053 0.0016178 −0.019
EU 0.0000452 0.0015911 −0.032

OEU 0.0000452 0.0015911 −0.028
CEA 0.0000452 0.0015911 −0.079
FSU 0.0000011 0.0013047 −0.12
AUZ 0.0000616 0.0015639 −0.045
MED 0.0034448 0.0019832 −0.188
MEA 0.0027937 0.0015860 −0.104
AFR 0.0034448 0.0019832 −0.13
CHN 0.0009018 0.0012589 −0.162
IND 0.0043852 0.0016913 −0.096
RAS 0.0017551 0.0017468 −0.112
EAS 0.0017551 0.0017468 −0.089
LAM 0.0006090 0.0013461 −0.069
LAO 0.0006090 0.0013461 −0.107
ROW 0.0006090 0.0013461 −0.063

Table 10: Parameters for abatement cost and damage functions
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M0 initial atmospheric CO2 concentration in 1800 (btC) 590
MAT

0 initial atmospheric CO2 concentration in 2000 (btC) 783
MUO

0 initial upper ocean and vegetation CO2 concentration in 2000 (btC) 807
MLO

0 initial lower ocean CO2 concentration in 2000 (btC) 19238
b11 carbon cycle transition matrix coefficient −0.033384
b22 carbon cycle transition matrix coefficient −0.039103
b33 carbon cycle transition matrix coefficient −0.000422
b12 carbon cycle transition matrix coefficient 0.033384
b21 carbon cycle transition matrix coefficient 0.027607
b23 carbon cycle transition matrix coefficient 0.011496
b32 carbon cycle transition matrix coefficient 0.000422

Table 11: Parameter values carbon cycle

TL
0 initial temperature change lower ocean ( ◦C compared to 1800) 0.108

TE
0 temperature change atmosphere ( ◦C compared to 1800) 0.622

F2X forcing with a carbon concentration doubling 3.800
c1 coefficient for upper level 1.7
c3 transfer coefficient upper to lower level 0.794
c4 transfer coefficient for lower level 0.03609

Table 12: Parameter values temperature cycle
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Probability distribution

s T2Xs πs s T2Xs πs s T2Xs πs

1 1.0 0.00001 26 3.5 0.02599 51 6.0 0.01044
2 1.1 0.00001 27 3.6 0.02528 52 6.1 0.01007
3 1.2 0.00007 28 3.7 0.02454 53 6.2 0.00972
4 1.3 0.00027 29 3.8 0.02377 54 6.3 0.00938
5 1.4 0.00079 30 3.9 0.02299 55 6.4 0.00906
6 1.5 0.00179 31 4.0 0.02220 56 6.5 0.00875
7 1.6 0.00338 32 4.1 0.02142 57 6.6 0.00846
8 1.7 0.00553 33 4.2 0.02065 58 6.7 0.00817
9 1.8 0.00814 34 4.3 0.01989 59 6.8 0.00790
10 1.9 0.01103 35 4.4 0.01916 60 6.9 0.00765
11 2.0 0.01400 36 4.5 0.01844 61 7.0 0.00740
12 2.1 0.01687 37 4.6 0.01774 62 7.1 0.00716
13 2.2 0.01952 38 4.7 0.01707 63 7.2 0.00694
14 2.3 0.02185 39 4.8 0.01642 64 7.3 0.00672
15 2.4 0.02381 40 4.9 0.01580 65 7.4 0.00651
16 2.5 0.02538 41 5.0 0.01520 66 7.5 0.00632
17 2.6 0.02658 42 5.1 0.01462 67 7.6 0.00612
18 2.7 0.02742 43 5.2 0.01407 68 7.7 0.00594
19 2.8 0.02794 44 5.3 0.01354 69 7.8 0.00577
20 2.9 0.02819 45 5.4 0.01304 70 7.9 0.00560
21 3.0 0.02821 46 5.5 0.01255 71 8.0 0.00541
22 3.1 0.02803 47 5.6 0.01209
23 3.2 0.02768 48 5.7 0.01165
24 3.3 0.02721 49 5.8 0.01123
25 3.4 0.02664 50 5.9 0.01082

Table 13: Validation set: probability of elements
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