WHAT WE OFFER: services and expertise

- Characterization / test / analysis realized by highly qualified UCLouvain members
- Processing of polymers and composites, ranging from extrusion to 3D printing, RTM/SQRTM
- Characterization of polymers and composites, including thermal, rheological, mechanical and thermomechanical analyses
- Technical advice and consultancy
- Training for R&D engineers from the industrial sector

Polymer Processing
- Lab bench twin screw extruders with the option of water assisted extrusion (Minimized sample material usage (20g); Throughput range 20g/h to 2.5kg/h; Max. screw speed 1000 rpm; Barrel Length L/D: 40 L/D; Max. Temperature 450°C)
- With accessories such as pelletizer, injection molding system and filament and film spooler.
- 3D printer machines adapted for conventional thermoplastics as well as for high performance one (PES, PEI, PEEK) (max temperature: 430°C)

Thermal analysis
- Differential Scanning Calorimetry (DSC)
- High Pressure DSC (HPDSC) max. 1000 bar
- Thermogravimetric analysis (TGA)
- Flash DSC
- Dynamic Vapor Sorption (DVS)

Rheological analysis
- Shear rheology
  - Strain/stress controlled shear rheometers
  - For melts, solutions and suspensions, oscillatory shear measurements, creep-recovery tests and nonlinear shear tests
  - Wide range of geometries: cone/plate, plate/plate with different diameters, cone-partitioned plate geometry, Couette device
- Extensional rheology
  - Measurements on the filament stretching rheometer (Vaderscoo) or on the Extensional Viscosity Fixture (EVF)
  - For polymer melts
  - Temperature control

Thermomechanical analysis
- Dynamical Mechanical Analysis (DMA): various deformation modes (shear, tensile, bending, etc.) from -150°C to +350°C
- Thermomechanical analysis (TMA) from -150°C to +350°C

Material testing
- Tensile machine at 100N and 10kN
- Non-contacting video extensometer
- Temperature chamber (-100°C + 350°C and cooling module for LN2)

CONTACT
Platform managers
Naïma Sallem
naima.sallem@uclouvain.be
+32(0)10/47.40.15 / +32(0)/10.47.82.31
Pascal Van Velthem
pascal.vanvelthem@uclouvain.be
+32(0)10/47.84.12

www.uclouvain.be/p2c