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catholique
de Louvain

Chair Lhoist Berghmans
in Environmental Economics
and Management

Center for Operations Research
and Econometrics (CORE)



Journal of Computational and Applied Mathematics 197 (2006) 437–445
www.elsevier.com/locate/cam

Prices versus quantities: Stock pollution control with repeated
choice of the instrument�

Marc Germaina, Alphonse Magnusb,∗
aDépartement d’Economie and CORE, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

bInstitut de Mathématique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Received 21 October 2005

Abstract

One examines strategies of pollution control through choices between taxes and tradable permits, supposed to be decided at several
time periods t1, t2, . . . , tI . At each of these time periods, the choice depends on the solution of a dynamic programming problem
involving the expectations of the polluting factor of production function z(t) and the pollutant stock function S(t). According to
coefficients of these two functions in the dynamic problem, it is shown under a broad functional setting that permits are decided
for a while, followed by decisions of taxes for all the remaining periods. Finite (I < ∞), as well as infinite (I = ∞) horizon is
considered.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

Taxes and quotas of tradable pollution permits are two important and intensively studied economic instruments for
pollution control. This paper is concerned with the comparison of taxes and permits when the regulatory authority
and the polluters have asymmetric information about abatement costs, and when environmental damages are due to a
pollutant that accumulates. At each period of time, the regulator chooses the type and the level of the instrument that
maximises a welfare functional depending on the expected flow of production minus damage costs, taking in account
the expected answer of the polluters to the chosen environmental policy.

We depart from the literature concerned by this subject (a.o. [3,2,4,5]) by allowing the possibility of switching
between instruments at each period, by considering finite as well as infinite horizon frameworks, and by considering a
more general formulation of the regulator’s objective and of the pollutant accumulation.
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We do not restrict ourselves to the infinite horizon case studied in the above-mentioned literature where the choice
of the instrument appears to be constant through time, and we show in the finite horizon case that permits are decided
for a while, followed by decisions of taxes for all the remaining periods.

1. The model

The model has both continuous and discrete time features. t is the continuous time variable (0� t �H), which is
divided in periods of length h, which are indexed by the discrete time index i (i ∈ {1, 2, . . . , I }, with h = H/I ). The
regulator chooses the instrument and its level at the beginning of each period i, and keeps this level constant for the
whole period.

To this end, one must estimate the reaction of the polluting firms:

1.1. The polluting firm reaction

At each step i, the representative polluting firm is assumed to maximise a quadratic profit functional involving

aiz(t) − b

2
z2(t) − �iz(t), [i − 1]h� t � ih, (1)

in which az − bz2/2 is the firm’s production function, where z is the polluting factor of production (for example,
emissions linked to energy), ai is the realization at period i of a, a discrete i.i.d. random process with mean � and
variance �2, and b is a positive constant. �i is either the level of the tax chosen by the regulator or the observed price of
permits at period i. In problem (1), it is assumed that the representative firm does not take account of the future, because
it is too small to influence the aggregate stock of pollutant, and thus has no power to influence the future environmental
policy. The firm is thus unable to manipulate the future decisions of the regulator, so that its profit maximisation problem
is solved at any time by

z(t) = zi := ai − �i

b
, [i − 1]h� t � ih. (2)

If the chosen instrument at step i is a tax, the behaviour of the firm is described by (2). If the chosen instrument are
permits, then whatever the random shock ai , their price will adjust so that the demand of permits by polluters equals
the quantity of permits supplied by the regulator, xi . In that case,

z(t) = xi, [i − 1]h� t � ih. (3)

Remark that the values of �i or xi will be determined by the regulator as solutions of an optimization problem. And
the decision to order tax or permits is also a part of the solution.

Let � be a binary decision variable determining the type of the instrument (tax or permits), with � = 0 if permits
are chosen and � = 1 if a tax is chosen. Let x = E{z} be the expectation of z. Given (2) and (3), x can be taken as the
decision variable determining the level of the instrument (the level of the tax or the quantity of permits), whether this
instrument is a tax or a quota.

We summarize both (2) and (3) as

z(t) = xi + �i

[
ai − �

b

]
, (4)

where the unknowns for the ith period are �i and xi . If �i = 0 (permits), xi must be understood as xi ; if �i = 1 (tax),
xi means (� − �i )/b, i.e., �i will be recovered as � − bxi .

1.2. The stock of pollutant

We suppose that the evolution of the stock of pollutant S(t) is given in t ∈ [(i − 1)h, ih] by

S(t) = �(t − [i − 1]h)Si−1 + �(t − [i − 1]h)zi , (5)
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where Si−1 is the value S([i−1]h), and zi is the value seen above of the piecewise constant function z(t) on ([i−1]h, ih).
� and � are continuous functions, and �(0) = 1, �(0) = 0.

A typical instance of (5) results when S(t) is a solution of the differential equation

dS(t)

dt
= z(t) − �S(t), S(0) = S0 given, (6)

where � is the rate of decay of the stock of pollution (� > 0) and where the number of firms has been normalized to 1.
As z(t) is the constant zi on ([i − 1]h, ih), we solve immediately (6) as

S(t) = zi

�
+

[
Si−1 − zi

�

]
exp(−�(t − [i − 1]h)),

whence

�(t) = exp(−�t), �(t) = 1 − exp(−�t)

�
. (7)

1.3. The regulator’s decision

The stock of pollutant S(t) results in damages to society that are equal to �S2(t)/2, where � is a positive parameter.
At the beginning of each step i (i.e., when t = [i − 1]h), that is before observing the current and future random

shocks aj (j = i, . . . , I ), but knowing however their mean and variance, the regulator chooses the type and the level of
the instrument that maximise the expected flow of payoffs defined as the difference between production and damages
�S2/2, subject to the behaviour of the polluters (described by (2) or (3)) and to the stock equation (6). At step i, the
regulator solves the following dynamic programming problem:

Vi(Si−1) = max
�i ,xi

E

{
Fi

(
a(t)z(t) − b

2
z2(t) − �

2
S2(t)

)}
, (8)

subject to (5), and to (4) giving z(t) in the ith period, with VI+1(SH ) = 0, and where we only require Fi to be a linear
positive functional involving functions on [i − 1]h < t < H , and submitted to the condition (10) below.

A typical example of what we have in mind is an integral

Fi (f ) =
∫ H

[i−1]h
f (t) exp(−r(t − [i − 1]h)) dt , (9)

where r is the exogeneous (positive) discount rate, but other forms have been considered (see examples later on).
We also suppose that the functionals Fi and Fi+1 are related by

Fi (f ) = F(f (t + [i − 1]h)) + 	Fi+1(f ), (10)

where F involves functions defined on t ∈ [0, h].
Remark that Fi (f ) = ∑I

j=i	
j−iF(f (t + [j − 1]h)).

In our example (9), F(f ) = ∫ h

0 f (t)e−rt dt , and 	 = e−rh. We then have F(1) = (1 − e−rh)/r , from (7),

F(�) = 1 − e−[r+�]h

r + �
, F(�) = 1 − e−rh

r�
− 1 − e−[r+�]h

[r + �]� , etc.

Using such expressions in the subsequent discussions should soon be an absolute nightmare. That is why we shall keep
the F notation in further calculations as far as possible. Our theory is therefore able to cope with several formulas. As
a second example, Hoel and Karp use in [3] an elementary integration formula F(f )= ((1 − e−rh)/r)f (0), therefore,
their Fi (f ) is ((1 − e−rh)/r)

∑I
j=ie

−r[j−i]hf ([j − 1]h).
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2. Optimal solution

Theorem. For any set of functionalsFi satisfying (10), the problems (8) are solved with values �i=0 (permits) or �i=1
(tax) determined whether the ratio �/b is larger or smaller than a computable value 
i . Moreover, 
1 < 
2 < · · · < 
I .

If H → ∞ (infinite horizon), 
1, 
2, . . . tend towards a same limit 
∗.

This means that,

(1) if �/b < 
1, taxes will be chosen for all periods,
(2) if �/b > 
I , quotas will be chosen for all periods,
(3) if 
1 < �/b < 
I , quotas will be chosen while �/b > 
i , and taxes later on.

When the horizon is infinite, we have taxes or permits for all the periods, depending only on the ratio �/b, whether it
is smaller or larger than 
∗.

Proof.

(1) We first look at how the decision has to be taken with respect to the last period i = I . We perform the calculation
of (8), using (5), and knowing that a and x (and therefore z) are constants on (tI−1, tI ) = (H − h, H):

FI

(
aI zI − b

2
z2
I − �

2
[�(t − [I − 1]h)SI−1 + �(t − [I − 1]h)zI ]2

)

= F

(
aI zI − b

2
z2
I − �

2
[�(t)SI−1 + �(t)zI ]2

)
from (10)

=
(

aI zI − b

2
z2
I

)
F(1) − �

2
[S2

I−1F(�2) + 2zI SI−1F(��) + z2
IF(�2)],

which shows already that the result will be a quadratic polynomial in SI−1.
We now compute the mathematical expectation in (8), knowing that aI is a value of a random variable of mean
� and variance �2, and, from (4), E{zI } = xI , E{aI zI } = E{aI xI + �I (a

2
I − �aI )/b} = �xI + �I�

2/b, and
E{z2

I } = E{x2
I + 2�I xI (aI − �)/b + �I (aI − �)2/b2} = x2

I + �I�
2/b2. So,

E

{
FI

(
aI zI − b

2
z2
I − �

2
S2(t)

)}
=

(
�xI + �I

�2

b
− b

2
x2
I − �I b

2

�2

b2

)
F(1)

− �

2

[
S2

I−1F(�2) + 2xISI−1F(��) +
[
x2
I + �I

�2

b2

]
F(�2)

]

= �I

�2

2b
F(1) − �

2
S2

I−1F(�2) − �I

�

2

�2

b2 F(�2)

+ [�F(1) − �SI−1F(��)]xI − [bF(1) + �F(�2)]x
2
I

2
.

Maximizing with respect to xI , i.e., by putting

xI = �F(1) − �SI−1F(��)

bF(1) + �F(�2)
, (11)

one finds the required quadratic polynomial in SI−1

�I

�2

2b

[
F(1) − �

b
F(�2)

]
− �

2
S2

I−1F(�2) + [�F(1) − �SI−1F(��)]2

2b[F(1) + �
b
F(�2)] . (12)
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The complete solution of (8) at the final period is

VI (SI−1) = −�

2
S2

I−1F(�2) + [�F(1) − �SI−1F(��)]2

2b[F(1) + �
b
F(�2)] + �I

�2

2b

[
F(1) − �

b
F(�2)

]
. (13)

We emphasize the quadratic character of the function VI by writing (13) as

VI (SI−1) = �(I )
0 + �(I )

1 SI−1 + �(I )
2 �

2
S2

I−1 (14)

(borrowing a notation of [3]).
Remark that

�(I )
2 = �

F2(��) − F(�2)F(�2) − [b/�]F(1)F(�2)

bF(1) + �F(�2)

is negative: as F is a positive linear functional, F(��) is a scalar product.
The sign of the coefficient of �I in (13) tells if tax or permit will be decided for the last period, i.e., whether


I = F(1)

F(�2)
≶�

b
. (15)

In the simple case where F(f ) = f (h) and �(t) = t , the result is 1/h2. If F(f ) = ∫ h

0 f (t) dt , 
I = 3/h2. And
if F(f ) = f (0), 
I = ∞ (always tax during the last period).

(2) We come now to the general problem (8) for an intermediate period ([i − 1]h, ih).
We will show by induction that a quadratic expression similar to (14), i.e.,

Vi+1(Si) = �(i+1)
0 + �(i+1)

1 Si + �(i+1)
2 �

2
S2

i , (16)

holds at the i + 1th period. Therefore, using (10),

Fi

(
a(t)z(t) − b

2
z2(t) − �

2
S2(t)

)
= F

(
aizi − b

2
z2
i − �

2
S2(t + [i − 1]h)

)
+ 	Vi+1(Si),

as all the parameters have been settled in Fi+1.
Assuming (16), we proceed as above in looking for the maximum of E{Fi}.

E{Fi} =
(

�i

�2

2b
+ �xi − b

2
x2
i

)
F(1)

− �

2

[
S2

i−1F(�2) + 2xiSi−1F(��) + �i�
2

b2 F(�2) + x2
i F(�2)

]

+ 	�(i+1)
0 + 	�(i+1)

1 [�(h)Si−1 + �(h)xi]

+ 	�(i+1)
2 �

2

[
[�(h)Si−1 + �(h)xi]2 + �2(h)�i

�2

b2

]

= �i�
2

2b
F(1) − �

2
S2

i−1F(�2) − �

2

�i�
2

b2 F(�2)

+ 	�(i+1)
0 + 	�(i+1)

1 �(h)Si−1 + 	
�(i+1)

2

2
��2(h)S2

i−1 + 	�i

�(i+1)
2 ��2(h)�2

2b2

+ [�F(1) − �Si−1F(��) + 	�(i+1)
1 �(h) + 	�(i+1)

2 ��(h)�(h)Si−1]xi

− [bF(1) + �F(�2) − 	�(i+1)
2 ��2(h)]x2

i /2.
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Maximum is reached at

xi = �F(1) − �Si−1F(��) + 	�(i+1)
1 �(h) + 	�(i+1)

2 ��(h)�(h)Si−1

bF(1) + �F(�2) − 	�(i+1)
2 ��2(h)

, (17)

resulting in

�i�
2

2b
F(1) − �

2
S2

i−1F(�2) − �

2

�2

b2 F(�2)

+ 	�(i+1)
0 + 	�(i+1)

1 �(h)Si−1 + 	
�(i+1)

2

2
��2(h)S2

i−1 + 	�i

�(i+1)
2 ��2(h)�2

2b2

+ [�F(1) − �Si−1F(��) + 	�(i+1)
1 �(h) + 	�(i+1)

2 ��(h)�(h)Si−1]2

2[bF(1) + �F(�2) − 	�(i+1)
2 ��2(h)]

.

We confirm therefore the inductive step from (16)

Vi(Si−1) = �(i)
0 + �(i)

1 Si−1 + �(i)
2 �

2
S2

i−1, (18)

where we only look at the �i�
2 term in �(i)

0 = �i
�2

2b
Ri(�/b) + · · ·:

Ri

(�

b

)
= F(1) − �

b
F(�2) + 	

�

b
�(i+1)

2 �2(h), (19)

so that we also will have to care for �(i)
2 :

�(i)
2 = −F(�2) + 	�(i+1)

2 �2(h) + �
[−F(��) + 	�(i+1)

2 �(h)�(h)]2

bF(1) + �F(�2) − 	�(i+1)
2 ��2(h)

, (20)

which shows that the �2’s, and therefore the Ri’s in (19), are rational functions of �/b.
(3) We proceed now with a close inspection of (20) in order to discuss the positive root 
i of Ri(�/b) = 0, so to

determine the value of the ratio �/b which will trigger tax or permits during the ith step:
(a) We work (20), showing that �(i)

2 is actually a rational function of first degree of �(i+1)
2 :

�(i)
2 = (�/b)[	�i+1

2 F(�2) + F2(��) − F(�2)F(�2)] + 	�2(h)F(1)�(i+1)
2 − F(1)F(�2)

F(1) + (�/b)[F(�2) − 	�2(h)�(i+1)
2 ]

, (21)

where the function � is �(t) := �(h)�(t)−�(h)�(t). We already see that all the �(i)
2 ’s are negative when i�I ,

as �(I+1)
2 = 0, and as the numerator of (21) is negative (F2(��)�F(�2)F(�2), and F(1)F(�2) > 0).

(b) We now proceed with the simple fraction expansion of (21):

�(i)
2 = −F(�2)

�2(h)
− b

�

�2(h)

�2(h)
F(1) + b

��2(h)

[�(h)F(1) − (�/b)F(��)]2

F(1) + (�/b)[F(�2) − 	�2(h)�(i+1)
2 ]

, (22)

showing (see Fig. 1) that �(i)
2 is a nondecreasing function of �(i+1)

2 . Therefore, the sequence 0=�(I+1)
2 ��(I )

2 �
�(I−1)

2 � · · · is a nonincreasing nonpositive one, converging through an elementary iteration process towards

the negative root �(−∞)
2 of

�

b
	�2(h)�2

2 +
[�

b
[	F(�2) − F(�2)] − [1 − 	�2(h)]F(1)

]
�2

− �

b
[F(�2)F(�2) − F2(��)] − F(1)F(�2) = 0. (23)
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�2

�2 �2

�2

�2

�2 �2
(−∞) (I−1) (I)

(i)

(i+1)

(I−1)

(I−2)

Fig. 1. Successive values of �(i)
2 .

If needed, we can get a more quantitative description of the sequence of the �(i)
2 ’s. Indeed, with (22) written

as �(i)
2 = −A + B2/(C − �(i+1)

2 ),

�(i)
2 + A = B2

C + A − B2

C + A − B2

C + A
.. .

C + A − B2

C

.

Such continued fractions with constant elements are easily evaluated through powers of the roots of r2 −
(C + A)r + B2 = 0 [1, Section 123, p. 501], say, r1 and r2. Then, the relevant combination is soon found to
be

�(i)
2 + A = B2 rI−i+1

1 − rI−i+1
2 − A[rI−i

1 − rI−i
2 ]

rI−i+2
1 − rI−i+2

2 − A[rI−i+1
1 − rI−i+1

2 ] = C[rI−i+1
1 − rI−i+1

2 ] − B2[rI−i
1 − rI−i

2 ] ,

whence

�(i)
2 = (B2 − AC)[rI−i+1

1 − rI−i+1
2 ]

C[rI−i+1
1 − rI−i+1

2 ] − B2[rI−i
1 − rI−i

2 ] .

As r1 and r2 are positive and unequal,1 �(i)
2 tends exponentially fast towards �(−∞)

2 when i → −∞.

(c) We now return to (21) in order to show that each (�/b)�(i)
2 (�/b) is a nonincreasing function of �/b: indeed,

it is true for �(I+1)
2 ≡ 0; if it is true for (�/b)�(i+1)

2 (�/b), the denominator of (21) is a positive nondecreasing
function, and the numerator times �/b is a nonpositive nonincreasing function.

1 One finds [√r1 ± √
r2]2 = A + C ± 2B = (bF(1)/��2(h))[	−1/2 ± �(h)]2 + (1/�2(h))[	−1/2� ∓ �]2 > 0.
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R

Ri (�/b) Ri+1 (�/b)


i

i+1

 (1)

�/b

Fig. 2. Zeroes of two successive R functions.

Therefore, from (19), Ri(�/b) is a nonincreasing function of �/b too, which must vanish for one positive
value 
i of �/b (as Ri(0) = F(1) > 0, and Ri(∞) = −∞ if i < I ).
Finally, as Ri < Ri+1, 
i < 
i+1, (see Fig. 2), which ends the proof of the theorem. �

3. Examples

With the integral form of F from (9) above, and � = 0.005, r = 0.03 (found in [3]) in (7), we are able to compute
some values of Ri(�/b) (actually, Ri/F(1)) when h = 10. Recall that Ri < 0 means that permits will hold for the
period (i − 1)h < t < ih, and that tax will be chosen if Ri > 0.

�/b R−∞ RI−3 RI−2 RI−1 RI

0 1 1 1 1 1

∗ = 0.0102390619 0 0.00175409676 0.0150992067 0.122913662 0.695404832

I−3 = 0.0102631672 −0.00174275376 0 0.0133000540 0.121058490 0.694687740

I−2 = 0.0104418439 −0.0146311280 −0.0129701024 0 0.107330730 0.689372401

I−1 = 0.0118571462 −0.115019270 −0.113880153 −0.103281030 0 0.647269499

I = 0.0336153131 −1.47231842 −1.47231520 −1.47201966 −1.44479355 0
0.0600374213 −2.95549322 −2.95549322 −2.95549322 −2.95549322 −0.786014045

The strange phenomenon of the last row occurs at �/b = �(h)F(1)/F(��) where all the Ri’s have the same value,
from RI−1 downwards.

We now look at values of 
i , i.e., the ratio �/b separating permits from tax, for various values of h. The value 
∗
corresponds to infinite horizon. We also show 
∗(HK) as calculated by Hoel and Karp [3, formula (15) p. 377].

h 
∗(HK) 
∗ 
I−3 
I−2 
I−1 
I

100 0.00199 0.000839 0.000839 0.000839 0.000839 0.000991
10 0.00897 0.010239 0.010263 0.010441 0.011857 0.033615
1 0.53543 0.645472 0.655971 0.696356 0.886452 3.033980
0.1 50.3504 61.00348 62.21340 66.55009 86.00395 300.3377

For an empirical illustration of pollution control in the framework of climate change, Hoel and Karp [3] give two
estimates of �/b which are 0.0000137 and 0.00002. For all the values of h, r, and � considered here, the tables above
show that these estimates are largely lower than 
∗, indicating that the regulator will choose the tax in all cases.

It is interesting to look at analytic formulas for small h, as done in [3]. Then, �(t) ≈ 1 and �(t) ≈ t , so, F(1) and
F(�2) ≈ h, F(�2) ≈ h3/3, etc. from (20),

�(i)
2 ≈ −h + �(i+1)

2 + �
[−h2/2 + h�(i+1)

2 ]2

bh + �(h3/3) − �h2�(i+1)
2

: �(I+1)
2 = 0, �(I )

2 ≈ −h
1 + (�/b)h2/12

1 + (�/b) h2/3
, . . .
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converging towards �(−∞)
2 ≈ −√

b/� + h2/12;

RI (�/b) ≈ h[1 − (h2/3)(�/b)], RI−1(�/b) ≈ h
1 − h2(�/b) − (7h4/36)(�/b)2

1 + (h2/3)(�/b)
, . . . ,

R−∞(�/b) ≈ h[1 − (h2/3)(�/b) − h

√
�/b + (h2/12)(�/b)2],


I ≈ 3/h2, 
I−1 ≈ 6/(7h2), . . . 
∗ ≈ 6[5 − 2
√

6]/h2 ≈ 0.6/h2.

With simpler formulas, such as in [3],F(f )=F(1)f (0), thenF(�)=F(��)=0,F(�2)=F(1)�2(h), �(I )
2 =−F(1),

RI (�/b) = F(1), RI−1(�/b) = F(1)[1 − 	�2(h)�/b], . . .

�(−∞)
2 = F(1)

1 − 	�2(h) − 	�2(h)�/b −
√

[1 − 	�2(h) − 	�2(h)�/b]2 + 4	�2(h)�/b

2	�2(h)�/b
.


I = ∞, 
I−1 = 1/(	�2(h)), . . . , 
∗ = 
−∞ = [2 − 	�2(h)]/[2	�2(h)], in agreement with [3, formula (15) p. 377],
with 	 = exp(−rh), �(h) = exp(−�h), and �(h) = h.
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